Skip to main content

The Relationship Between Growth Enhancement and pet Expression in Escherichia coli

  • Chapter
  • 455 Accesses

Part of the book series: ABAB Symposium ((ABAB,volume 57/58))

Abstract

The pet operon consists of genes coding for enzymes responsible for ethanol production and consists of pyruvate dehydrogenase and alcohol dehydrogenase II from the high-performance ethanologen Zymomonas mobilis. This article describes the physiological influence of pet expression in Escherichia coli B (ATCC 11303) in terms of growth rate and overall concentrations of cell mass and catabolic end products achieved under well-defined cultivation conditions that included constant pH and carbon (energy) limitation. Glucose, mannose, and xylose were used as substrates, because they represent the principal fermentable components of lignocellulosic biomass and because fermentation of these sugars involves different metabolic pathways. Two different types of ethanologenic recombinants were used—a strain in which pet expression was via a multicopy plasmid (pLOI297) and a chromosomal integrant, strain KO11. Under the condition of sugar substrate limitation, there was no growth enhancement by pet expression with either glucose or mannose. Whereas the host strain produced exclusively lactic acid from glucose and mannose, both recombinants produced mostly ethanol. Both the plasmid-carrying strain and the pet integrant exhibited slower growth compared to the host culture with glucose or mannose as fermentation substrate. With mannose, the plasmid recombinant grew appreciably slower than either the host culture or the recombinant KO11. Use of a magnesium-deficient medium produced different results with glucose since substrate and turbidometric measurements proved to be unreliable in terms of estimating overall biomass levels. At pH 6.3, pet expression improved overall biomass yield; but at pH 7.0, the cell yields exhibited by the plasmid recombinant and the host strain were the same. E. coli B did not grow well on xylose as sole carbon source. With xylose, pet expression increased the growth rate, but had no effect on the overall biomass yield. In comparing our observations with the reports of others, it was concluded that the effect of pet expression on growth of E. coli is dependent on several different biochemical, physiological, genetic, and environmental factors, which largely precludes a statement of generality regarding this phenomenon.

Author to whom all correspondence and reprint requests should be addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knappe, J. (1987), in Escherichia coli and Salmonella typhimurium, vol. 1, Neidhart, F. C., ed., Academic, New York, pp. 151–155.

    Google Scholar 

  2. Tempest, D. W. and Neijssel, O. M. (1987), in Escherichia coli and Salmonella typhimurium, vol. 1, Neidhart, F. C., ed., Academic, New York, pp. 797–806.

    Google Scholar 

  3. Gottschalk, G. (1986), in Bacterial Metabolism, 2nd ed., Springer-Verlag, New York, pp. 208–282.

    Google Scholar 

  4. Roos, J. W., McLaughlin, J. K., and Papoutsakis, E. T. (1985) Biotechnol. Bioeng. 27, 681–694.

    Article  CAS  Google Scholar 

  5. Thauer, R. K., Jungermann, K., and Decker, K. (1977) Bacteriol. Rev. 41, 100–180.

    CAS  Google Scholar 

  6. Stouthamer, A. H. (1977), in Microbial Energetics, 27th Symp. Soc. Gen. Microbiol., Haddock, B A. and Hamilton, W. A., eds., Cambridge University Press, London, pp. 285–315.

    Google Scholar 

  7. Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987) Appl. Environ. Microbiol. 53, 2420–2425.

    CAS  Google Scholar 

  8. Ingram, L. O., Conway, T., and Alterthum, F. (1991), United States Patent 5,000,000.

    Google Scholar 

  9. Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S. (1990), in Developments in Industrial Microbiology, vol. 31, Pierce, G. E., ed., Elsevier Science, New York, pp. 21–30.

    Google Scholar 

  10. Alterthum, F. and Ingram, L. O. (1989) Appl. Environ. Microbiol. 54, 397–404.

    Google Scholar 

  11. Ingram, L. O. (1991), in Energy from Biomass and Wastes XIV Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 1105–1126.

    Google Scholar 

  12. Neale, A. D., Scopes, R. K., and Kelly, J. M. (1988) Appl. Microbiol. Biotechnol. 29, 162–167.

    CAS  Google Scholar 

  13. Holmes, W. H. (1986), in Current Topics in Cellular Regulation, vol. 28, Academic, New York, pp. 69–105.

    Google Scholar 

  14. Nimmo, H. G. (1987), in Escherichia coli and Salmonella, vol. 1, Neidhart, F. C., ed., Academic, New York, pp. 156–169.

    Google Scholar 

  15. Guest, J. R., Cole, S. T., and Jeyaseelan, K. (1981) J. Gen. Microbiol. 127, 65–79.

    CAS  Google Scholar 

  16. Diaz-Ricci, J. C., Tsu, M., and Bailey, J. E. (1992) Biotechnol. Bioeng. 39, 59–65.

    Article  CAS  Google Scholar 

  17. Diaz-Ricci, J. C., Hitzmann, B., and Bailey, J. E. (1991) Biotechnol. Prog. 7, 305–310.

    Article  CAS  Google Scholar 

  18. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O. (1991) Appl. Environ. Microbiol. 57, 893–900.

    CAS  Google Scholar 

  19. Lawford, H. G. and Rousseau, J. D. (1995) Appl. Biochem. Biotechnol. 51/52, 179–195.

    Article  Google Scholar 

  20. Grohmann, K., Baldwin, E. A., Buslig, B. S., and Ingram, L. O. (1994) Biotechnol. Lett. 16, 281–286.

    Article  CAS  Google Scholar 

  21. Grohmann, K., Cameron, R. G., and Buslig, B. S. (1995) Appl. Biochem. Biotechnol. 51/52,423–435.

    Article  Google Scholar 

  22. Lawford, H. G. and Rousseau, J. D. (1991) Appl. Biochem. Biotechnol. 28/29, 221–236.

    Article  Google Scholar 

  23. Stouthamer, A. H. (1976), in Yield Studies in Microorganisms, Meadowfield, Dewbury, UK.

    Google Scholar 

  24. Lawford, H. G. and Rousseau, J. D. (1992) Appl. Biochem. Biotechnol. 34/35, 185–204.

    Article  Google Scholar 

  25. Lawford, H. G. and Rousseau, J. D. (1993) Appl. Biochem. Biotechnol. 39/40, 301–322.

    Article  Google Scholar 

  26. Boyer, H. W. and Rouland-Dussoix, D. J. (1969) J.Mol. Biol. 41, 459–472.

    Article  CAS  Google Scholar 

  27. Lui, G. W. and Strohl, W. R. (1990) Appl. Environ. Microbiol. 56, 1004–1011.

    Google Scholar 

  28. Smirova, G. V. and Oktybr’skii, O. N. (1985) Microbiology (USSR) 54, 205–209.

    Google Scholar 

  29. Smirova, G. V., and Oktybr’skii, O. N. (1985) Microbiology (USSR) 57, 446–451.

    Google Scholar 

  30. Diaz-Ricci, J. C., Regan, L., and Bailey, J. E. (1991) Biotechnol. Bioeng. 38, 1318–1324.

    Article  CAS  Google Scholar 

  31. Lawford, H. G. and Rousseau, J. D. (1996) Appl. Biochem. Biotechnol. 57/58, 307–326.

    Article  Google Scholar 

  32. Guimaraes, W. V., Dudley, G. L., and Ingram, L. O. (1992) Biotechnol. Bioeng. 40, 41–45.

    Article  CAS  Google Scholar 

  33. Lawford, H. G., and Rousseau, J. D. (1993), in Energy from Biomass and Wastes XVI, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 559–597.

    Google Scholar 

  34. Lawford, H. G. and Rousseau, J. D. (1993) Biotechnol. Lett. 15, 615–620.

    Article  CAS  Google Scholar 

  35. Barbosa, M. F. S., Beck, M. J., Fein, J. E., Potts, D., and Ingram, L. O. (1992) Appl. Environ. Microbiol. 58, 1382–1384.

    CAS  Google Scholar 

  36. Ohta, K., Alterhum, F., and Ingram, L. O. (1990) Appl. Environ. Microbiol. 56, 463–465.

    CAS  Google Scholar 

  37. Beall, D. S., Ohta, K., and Ingram, L. O. (1991) Biotechnol. Bioeng. 38, 296–303.

    Article  CAS  Google Scholar 

  38. Lawford, H. G. and Rousseau, J. D. (1992), inEnergy from Biomass and Wastes XV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 583–622.

    Google Scholar 

  39. Lawford, H. G. and Rousseau, J. D. (1994) Appl. Biochem. Biotechnol. 45/46, 367–382.

    Article  Google Scholar 

  40. Lawford, H. G. and Rousseau, J. D. (1991) Biotechnol. Lett. 13, 191–196.

    Article  CAS  Google Scholar 

  41. Kracke-Hem, H. A., Rinas, U., Hitzmann, B., and Schügerl, K. (1991) Curr. Microbiol. 23, 71–74.

    Article  Google Scholar 

  42. Yang, X.-M. (1992) J. Biotechnol. 23, 271–389.

    Article  CAS  Google Scholar 

  43. Yee, L. and Blanch, H. W. (1992) Bio/Technol. 10, 1550–1556.

    Article  CAS  Google Scholar 

  44. Yee, L. and Blanch, H. W. (1993) Biotechnol. Bioeng. 41, 221–230.

    Article  CAS  Google Scholar 

  45. Landwall, P. and Holme, T. (1977) J. Gen. Microbiol. 103, 353–358.

    CAS  Google Scholar 

  46. LeVine, S. M., Ardeshir, F., and Ferro-Luzzi Ames, G. (1980) J. Bacteriol. 143, 1081.

    CAS  Google Scholar 

  47. Koh, B. T., Nakashimada, U., Pfeiffer, M., and Yap, M. G. S. (1992) Biotechnol. Lett. 14, 1115–1118.

    Article  CAS  Google Scholar 

  48. Lawford, H. G. and Rousseau, J. D. (1996) Appl. Biochem. Biotechnol. 57/58, 293–305.

    Article  Google Scholar 

  49. Lawford, H. G. and Rousseau, J. D. (1994) Appl. Biochem. Biotechnol. 45/46, 349–365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lawford, H.G., Rousseau, J.D. (1996). The Relationship Between Growth Enhancement and pet Expression in Escherichia coli . In: Wyman, C.E., Davison, B.H. (eds) Seventeenth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium, vol 57/58. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0223-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0223-3_25

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6669-3

  • Online ISBN: 978-1-4612-0223-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics