Skip to main content

Sorptive Recovery of Dilute Ethanol from Distillation Column Bottoms Stream

  • Chapter
Seventeenth Symposium on Biotechnology for Fuels and Chemicals

Part of the book series: ABAB Symposium ((ABAB,volume 57/58))

  • 473 Accesses

Abstract

Modern ethanol distillation processes are designed to ensure removal of all ethanol from the column bottoms, i.e., to levels <100ppm ethanol, and utilize substantial str ipping steam to achieve this result. An alternate approach using sorption was attempted as a means to reduce energy requirements in the stripping section, and thereby reduce cost. Adsorbents tested for use in such an application showed that carbonaceous supports, in particular Ambersorb XEN 572, gave alcohol-free water as effluent when a 1% (w/w) starting ethanol concentration was passed downflow at 1 bed vol/h over a fixed-bed adsorber at 70°C. Regeneration was readily achieved at 70-90°C using hot air, vacuum, superheated steam, or hot water to strip the ethanol from the column, and yielded ethanol streams containing a maximum of 5.9% alcohol, with average concentrations of 2.5-3.5% depending on the regeneration method used. These experimentally determined operating conditions combined with distillation energy calculations have enabled development of a process concept for sorptive concentration of dilute ethanol which is more energy efficient than distillation alone. The combination of existing distillation and corn grit drying technologies, with sorptive recovery of dilute ethanol (from the column bottoms) shows promise of recovering a fuel grade, 99.4% ethanol product from a 4.5% ethanol broth with an energy requirement of 23,100 BTU/gal. The potential energy saving of 3600 BTU/gal over distillation alone corresponds to 1.8¢ /gal, and provides motivation for further examination of this approach in reducing costs of ethanol production from biomass.

Author to whom all correspondence and reprint requests should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ladisch, M. R. and Westgate, P. J. (1994) Improvements in Separation and Recovery Technology For Lower Biofuel Costs, Proceedings of Corn Utilization Conference V Corn Growers Association, St. Louis, MO.

    Google Scholar 

  2. Ladisch, M. R. and Schwandt, R. (1992),in Technology for Expanding the Biofuels Industry. Proceedings of workshop sponsored by DOE, USDA and Renewable Fuels Association in Chicago, p. II-4.

    Google Scholar 

  3. David, M. L., Hamnzaker, G. S., Buzenberg, R. J., and Wagner, J. P. (1978), in Gasohol Economic Feasibility Study, Development Planning and Research Assoc.; Inc., Manhattan, KS.

    Google Scholar 

  4. Ghose, T. K. and Tyzgi, R. D. (1979) Biotechnol. Bioeng. 21, 1387.

    Article  CAS  Google Scholar 

  5. Hohmann, N. and Rendleman, C. M. (1993), in Emerging Technologies in Ethanol Production, USDA Agriculture Information Bulletin No. 663, p. 1.

    Google Scholar 

  6. Ladisch, M. R. and Dyck, K. (1979).Science 205, 898.

    Article  CAS  Google Scholar 

  7. Phillips, J. A. and Humphrey, A. E. (1983), in Wood and Agricultural Residues: Research in Use for Feed, Fuels, and Chemicals, Soltes, E. J., ed., Academic, New York, p. 503.

    Google Scholar 

  8. Robertson, G. H., Doyle, L. R., and Pavlath, A. E. (1983)Biotechnol. Bioeng. 25, 3133.

    Article  CAS  Google Scholar 

  9. Crawshaw, J. P. and Hills, J. H. (1990)Ind. Eng. Chem. Res. 29, 307.

    Article  CAS  Google Scholar 

  10. Voloch, M., Ladisch, M. R., Bienkowski, P., and Tsao, G. T. (1984) Cereal Polysaccharides in Technology and Nutrition, Rasper, V. F. ed., American Association of Cereal Chemists, St. Paul, MN, p. 103.

    Google Scholar 

  11. Hong, J., Voloch, M., Ladisch, M. R., and Tsao, G. T. (1982) Biotechnol. Bioeng. 24, 725.

    Article  CAS  Google Scholar 

  12. Ladisch, M. R., Voloch, M., Hong, J., Bienkowski, P., and Tsao, G. T. (1984) Ind. Eng. Chem. Process Design Dep. 23, 437.

    Article  CAS  Google Scholar 

  13. Hills, J. H. and Pirzada, I. M. (1989) Chem. Eng. Res. Des. 67, 442.

    CAS  Google Scholar 

  14. Hassaballah, A. A. and Hills, J. H. (1990) Biotechnol. Bioeng. 35, 598.

    Article  CAS  Google Scholar 

  15. Bienkowski, P. R., Barthé, A., Voloch, M., Neuman, R. N., and Ladisch, M. R. (1986) Biotechnol. Bioeng. 28, 960.

    Article  CAS  Google Scholar 

  16. Neuman, R., Voloch, M., Bienkowski, P., and Ladisch, M. R. (1986) Ind. Eng. Chem. Fundam. 25, 422.

    Article  CAS  Google Scholar 

  17. Walsh, P. K., Liu, C. P., Findley, M. E., Liapis, A. I., and Siehr, D. J. (1983) Biotechnol. Bioeng. Symp. 13, 629.

    CAS  Google Scholar 

  18. Lee, J. Y., Westgate, P. J., and Ladisch, M. R. (1991) AIChE J. 37, 1187.

    Article  CAS  Google Scholar 

  19. Westgate, P. J. and Ladisch, M. R. (1993) Ind. Eng. Chem. Res. 32, 1676.

    Article  CAS  Google Scholar 

  20. Goetz, R. J. (1995), In Forefront, Goetz, R., ed. AGAD, Purdue University, West Lafayette, IN.

    Google Scholar 

  21. Katzen, R., Diebold, V. B., and Moon, G. B. (1969), US Patent 3, 445, 345.

    Google Scholar 

  22. Katzen, R. and Diebold, V. B. (1976), US Patent 3, 990, 952.

    Google Scholar 

  23. Lynd, L. R. and Grethlein, H. E. (1986) AIChE J. 32(8), 1347.

    Article  CAS  Google Scholar 

  24. Carey, J. S. and Lewis, W. K. (1932) J. Ind. Eng. Chem. (24), 882.

    Article  CAS  Google Scholar 

  25. Hong, J., Ladisch, M. R., and Tsao, G. T. (1981) J. Chem. Eng. Data. 26(3), 305–307.

    Article  CAS  Google Scholar 

  26. Dalager, P. (1969) J. Chem. Eng. Data 14(3), 298–301.

    Article  CAS  Google Scholar 

  27. Altsheler, W. B., Unger, E. D., and Kolachov, P. (1951) J. Ind. Eng. Chem. 43(11), 2559–2564.

    Article  CAS  Google Scholar 

  28. McCabe, W. L., Smith, J.C., and Harriott, P. (1985), in Unit Operations of Chemical Engineering. McGraw-Hill, New York, p. 489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gulati, M., Westgate, P.J., Brewer, M., Hendrickson, R., Ladisch, M.R. (1996). Sorptive Recovery of Dilute Ethanol from Distillation Column Bottoms Stream. In: Wyman, C.E., Davison, B.H. (eds) Seventeenth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium, vol 57/58. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0223-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0223-3_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6669-3

  • Online ISBN: 978-1-4612-0223-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics