Skip to main content

Bone Densitometry Techniques in Modern Medicine

  • Chapter

Part of the book series: Current Clinical Practice ((CCP))

Abstract

The field of bone densitometry has grown rapidly, particularly in the last 15 years. A variety of techniques are now available from which the physician may choose. Beyond the simple consideration of geographic accessibility, the choice of technique may be determined by the intent of the measurement. Some techniques, because of the skeletal sites to which they can be applied, or because of their accuracy and reproducibility or both are better suited for certain types of measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnston CC, Epstein S. Clinical, biochemical, radiographic, epidemiologic, and economic features of osteoporosis.Orthop Clin North Am1981; 12: 559–569.

    PubMed  Google Scholar 

  2. Aitken M.Osteoporosis in Clinical Practice.Bristol: John Wright & Sons, 1984, pp. 1–146.

    Google Scholar 

  3. Singh J, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis.J Bone Joint Surg Am1970; 52-A: 457–467.

    Google Scholar 

  4. Bohr H, Schadt O. Bone mineral content of femoral bone and lumbar spine measured in women with fracture of the femoral neck by dual photon absorptiometry.Clin Ortho1983; 179: 240–245.

    Article  Google Scholar 

  5. Nordin BEC. Osteoporosis with particular reference to the menopause. In: Avioli LV, ed.The Osteoporotic SyndromeNew York: Grune & Stratton, 1983, pp. 13–44.

    Google Scholar 

  6. Shimmins J, Anderson JB, Smith DA, et al. The accuracy and reproducibility of bone mineral measurements “in vivo.” (a) The measurement of metacarpal mineralisation using and X-ray generator.Clin Radiol1972; 23: 42–46.

    Article  PubMed  CAS  Google Scholar 

  7. Exton-Smith AN, Millard PH, Payne PR, Wheeler EF. Method for measuring quantity of bone.Lancet1969; 2: 1153–1154.

    Article  PubMed  CAS  Google Scholar 

  8. Dequeker J. Precision of the radiogrammetric evaluation of bone mass at the metacarpal bones. In: Dequeker J, Johnston CC, eds.Non-invasive Bone Measurements: Methodological ProblemsOxford: IRL, 1982: 27–32.

    Google Scholar 

  9. Aitken JM, Smith CB, Horton PW, et al. The interrelationships between bone mineral at different skeletal sites in male and female cadavera.J Bone Joint Surg Br1974; 56B: 370–375.

    Google Scholar 

  10. Meema HE, Meindok H. Advantages of peripheral radiogrametry over dual-photon absorptiometry of the spine in the assessment of prevalence of osteoporotic vertebral fractures in women.JBone Min Res1992; 7: 897–903.

    Article  CAS  Google Scholar 

  11. Bywaters EGL. The measurement of bone opacity.Clin Sci1948; 6: 281–287.

    PubMed  CAS  Google Scholar 

  12. Barnett E, Nordin BEC. Radiologic assessment of bone density. 1.-The clinical and radiological problem of thin bones.Br J Radiol1961; 34: 683–692.

    Article  PubMed  CAS  Google Scholar 

  13. Mack PB, Brown WN, Trapp HD. The quantitative evaluation of bone density.Am J Roentgenol Rad Ther1949; 61: 808–825.

    CAS  Google Scholar 

  14. Vose GP, Mack PB. Roentgenologic assessment of femoral neck density as related to fracturing.Am J Roentgenol Rad Ther Nucl Med1963; 89: 1296–1301.

    CAS  Google Scholar 

  15. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures.Lancet1993; 341: 72–75.

    Article  PubMed  CAS  Google Scholar 

  16. Mazess RB. Noninvasive methods for quantitating trabecular bone. In: Avioli LV, ed.The Osteoporotic SyndromeNew York: Grune & Stratton, 1983: 85–114.

    Google Scholar 

  17. Mack PB, O’Brien AT, Smith JM, Bauman AW. A method for estimating degree of mineralization of bones from tracings of roentgenograms.Science1939; 89: 467

    Article  PubMed  CAS  Google Scholar 

  18. Mack PB, Vogt FB. Roentgenographic bone density changes in astronauts during representative Apollo space flight.Am J Roentgenol Rad Ther Nucl Med1971; 113: 621–633.

    CAS  Google Scholar 

  19. Cosman F, Herrington B, Himmelstein S, Lindsay R. Radiographic absorptiometry: a simple method for determination of bone mass.Osteoporos Int1991; 2: 34–38.

    Article  PubMed  CAS  Google Scholar 

  20. Yates AJ, Ross PD, Lydick E, Epstein RS. Radiographic absorptiometry in the diagnosis of osteoporosis.Am JMed1995; 98: 41S–47S.

    CAS  Google Scholar 

  21. Yang S, Hagiwara S, Engelke K, et al. Radiographic absorptiometry for bone mineral measurement of the phalanges: precision and accuracy study.Radiology1994; 192: 857–859.

    PubMed  CAS  Google Scholar 

  22. Kleerekoper M, Nelson DA, Flynn MJ, Pawluszka AS, Jacobsen G, Peterson EL. Comparison of radiographic absorptiometry with dual-energy X-ray absorptiometry and quantitative computed tomography in normal older white and black women.J Bone Miner Res1994; 9: 1745–1749.

    Article  PubMed  CAS  Google Scholar 

  23. Yates AJ, Ross PD, Lydick E, Epstein RS. Radiographic absorptiometry in the diagnosis ofosteoporosis.Am JMed1995; 98: 415–475.

    Google Scholar 

  24. Cameron JR, Sorenson G. Measurements of bone mineral in vivo: an improved method.Science1963; 142: 230–232.

    Article  PubMed  CAS  Google Scholar 

  25. Vogel JM. Application principles and technical considerations in SPA. In: Genant HK, ed.Osteoporosis Update1987, San Francisco: University of California Printing Services, 1987: 219–231.

    Google Scholar 

  26. Johnston CC. Noninvasive methods for quantitating appendicular bone mass. In: Avioli LV, ed.The Osteoporotic SyndromeNew York: Grune & Stratton, 1983, pp. 73–84.

    Google Scholar 

  27. Barden HS, Mazess RB. Bone densitometry of the appendicular and axial skeleton.Top Geriatric Rehabil1989; 4: 1–12.

    Google Scholar 

  28. Kimmel PL. Radiologic methods to evaluate bone mineral content.Ann Intern Med1984; 100: 908–911.

    Google Scholar 

  29. Steiger P, Genant HK. The current implementation of single-photon absorptiometry in commercially available instruments. In: Genant HK, ed.Osteoporosis Update 1987San Francisco: University of California Printing Services, 1987, pp. 233–240.

    Google Scholar 

  30. Chesnut CH. Noninvasive methods for bone mass measurement. In: Avioli L, ed.The Osteoporotic Syndrome3rd ed, New York: Wiley-Liss, 1993, pp. 77–87.

    Google Scholar 

  31. Gardsell P, Johnell O, Nilsson BE. The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years.Calcif Tissue Int1991; 49: 90–94.

    Article  PubMed  CAS  Google Scholar 

  32. Hui SL, Slemenda CW, Johnston CC. Baseline measurement of bone mass predicts fracture white women.Ann Intern Med1989; 111: 355–361.

    PubMed  CAS  Google Scholar 

  33. Ross PD, Davis JW, Vogel JM, Wasnich RD. A critical review of bone mass and the risk of fractures in osteoporosis.Calcif Tissue Int1990; 46: 149–161.

    Article  PubMed  CAS  Google Scholar 

  34. Melton LJ, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites.J Bone Min Res1993; 8: 1227–1233.

    Article  Google Scholar 

  35. Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W. Axial and appendicular bone density predict fractures in older women.J Bone Min Res1992; 7: 633–638.

    Article  CAS  Google Scholar 

  36. Nord RH. Technical considerations in DPA. In: Genant HK, ed. Osteoporosis Update 1987, San Francisco: University of California Printing Services, 1987, pp. 203–212.

    Google Scholar 

  37. Dunn WL, Wahner HW, Riggs BL. Measurement of bone mineral content in human vertebrae and hip by dual photon absorptiometry.Radiology1980; 136: 485–487.

    PubMed  CAS  Google Scholar 

  38. Reed GW. The assessment of bone mineralization from the relative transmission of241Am and137Cs radiations.Phys Med Biol1966; 11: 174

    Google Scholar 

  39. Roos B, Skoldborn H. Dual photon absorptiometry in lumbar vertebrae.I.Theory and method.Acta Radiol Ther Phys Bio!1974; 13: 266–290.

    Article  CAS  Google Scholar 

  40. Mazess RB, Ort M, Judy P. Absorptiometric bone mineral determination using Gd. In: Cameron JR, ed.Proceedings of Bone Measurements ConferenceUS Atomic Energy Commission, 1970, pp. 308–312.

    Google Scholar 

  41. Wilson CR, Madsen M. Dichromatic absorptiometry of vertebral bone mineral content.Invest Radiol1977; 12: 180–184.

    Article  PubMed  CAS  Google Scholar 

  42. Madsen M, Peppier W, Mazess RB. Vertebral and total body bone mineral content by dual photon absorptiometry.Calcif Tissue Res1976; 2: 361–364.

    Google Scholar 

  43. Wahner HW, Dunn WL, Mazess RB, et al. Dual-photon Gd-153 absorptiometry of bone.Radiology1985; 156: 203–206.

    PubMed  CAS  Google Scholar 

  44. Lindsay R, Fey C, Haboubi A. Dual photon absorptiometric measurements of bone mineral density increase with source life.Calcif Tissue Int1987; 41: 293–294.

    Article  PubMed  CAS  Google Scholar 

  45. Cummings SR, Black DB. Should perimenopausal women be screened for osteoporosis?Ann Intern Med1986; 104: 817–823.

    PubMed  CAS  Google Scholar 

  46. Drinka PJ, DeSmet AA, Bauwens SF, Rogot A. The effect of overlying calcification on lumbar bone densitometry.Calcif Tissue Int1992; 50: 507–510.

    Article  PubMed  CAS  Google Scholar 

  47. Curry TS, Dowdey JE, Murry RC, eds. Attenuation. In:Christensen ‘s Physics ofDiagnostic Radiology.Philadelphia: Lea & Febiger, 1990, pp. 70–86.

    Google Scholar 

  48. Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N. Lateral dual-energy radiography: artifact error from rib and pelvic bone../Bone Min Res1992; 7: 97–101.

    Article  CAS  Google Scholar 

  49. Louis O, Van Den Winkel P, Covens P, Schoutens A, Osteaux M. Dual-energy X-ray absorptiometry of lumbar vertebrae: relative contribution of body and posterior elements and accuracy in relation with neutron activation analysis.Bone 1992;13: 317–320.

    Article  PubMed  CAS  Google Scholar 

  50. Lees B, Stevenson JC. An evaluation of dual-energy X-ray absorptiometry and comparison with dual-photon absorptiometry.Osteoporosis Int1992; 2: 146–152.

    Article  CAS  Google Scholar 

  51. Kelly TL, Slovik DM, Schoenfeld DA, Neer RM. Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine.J Clin Endocrinol Metab1988; 76: 839–844.

    Article  Google Scholar 

  52. Holbrook TL, Barrett-Connor E, Klauber M, Sartoris D. A population-based comparison of quantitative dual-energy X-ray absorptiometry with dual-photon absorptiometry of the spine and hip.Calcif Tissue Int1991; 49: 305–307.

    Article  PubMed  CAS  Google Scholar 

  53. Pouilles JM, Tremollieres F, Todorovsky N, Ribot C. Precision and sensitivity of dual-energy X-ray absorptiometry in spinal osteoporosis.J Bone Miner Res1991; 6: 997–1002.

    Article  PubMed  CAS  Google Scholar 

  54. Laskey MA, Crisp AJ, Cole TJ, Compston JE. Comparison of the effect of different reference data on Lunar DPX and Hologic QDR-1000 dual-energy X-ray absorptiometers.BrJRadiol 1992;65: 1124–1129.

    CAS  Google Scholar 

  55. Pocock NA, Sambrook PN, Nguyen T, Kelly P, Freund J, Eisman J. Assessment of spinal and femoral bone density by dual X-ray absorptiometry: comparison of lunar and hologic instruments.J Bone Min Res1992; 7: 1081–1084.

    Article  CAS  Google Scholar 

  56. Lai KC, Goodsitt MM, Murano R, Chesnut CC. A comparison of two dual-energy X-ray absorptiometry systems for spinal bone mineral measurement.Calcif Tissue Int1992; 50: 203–208.

    Article  PubMed  CAS  Google Scholar 

  57. Kalender WA. Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography.Osteoporos Int1992; 2: 82–87.

    Article  PubMed  CAS  Google Scholar 

  58. Faulkner KG, Cummings SR, Black D, Palermo L, Gluer C, Genant HK. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures.J Bone Min Res1993; 8: 1211–1217.

    Article  CAS  Google Scholar 

  59. Kelly TL, Crane G, Baran DT. Single x-ray absorptiometry of the forearm: precision, correlation, and reference data.Calcif Tissue Int1994; 54: 212–218.

    Article  PubMed  CAS  Google Scholar 

  60. Ruegsegger P, Elsasser U, Anliker M, Gnehm H, Kind H, Prader A. Quantification ofbone mineralisation using computed tomography.Radiology1976; 121: 93–97.

    PubMed  CAS  Google Scholar 

  61. Genant HK, Cann CE, Ettinger B, Gordan GS. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy.Ann Intern Med1982; 97: 699–705.

    PubMed  CAS  Google Scholar 

  62. Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography.J Comput Assist Tomogr1980; 4: 493–500.

    Article  PubMed  CAS  Google Scholar 

  63. Genant HK, Block JE, Steiger P, Gluer C. Quantitative computed tomography in the assessment of osteoporosis. In: Genant HK, ed.Osteoporosis Update 1987San Francisco: University of California Printing Services, 1987, pp. 49–72.

    Google Scholar 

  64. Laval-Jeantet AM, Roger B, Bouysse S, Bergot C, Mazess RB. Influence of vertebral fat content on quantitative CT density.Radiology1986; 159: 463–466.

    PubMed  CAS  Google Scholar 

  65. Reinbold W, Adler CP, Kalender WA, Lente R. Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography.Skeletal Radio!1991; 20: 25–29.

    CAS  Google Scholar 

  66. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone.J Pathol Bacteriol1967; 94: 274–291.

    Article  Google Scholar 

  67. Genant HK, Boyd D. Quantitative bone mineral analysis using dual energy computed tomography.Invest Radiol1977; 12: 545–551.

    Article  PubMed  CAS  Google Scholar 

  68. Cann CE. Quantitative computed tomography for bone mineral analysis: technical considerations. In: Genant HK, ed.Osteoporosis Update 1987San Francisco: University of California Printing Services, 1987, pp. 131–144.

    Google Scholar 

  69. Sartoris DJ, Andre M, Resnick C, Resnick D. Trabecular bone density in the proximal femur: quantitative CT assessment.Radiology1986; 160: 707–712.

    PubMed  CAS  Google Scholar 

  70. Reiser UJ, Genant HK. Determination of bone mineral content in the femoral neck by quantitative computed tomography. 70th Scientific Assembly and Annual Meeting of the Radiological Society of North America, Washington, DC, 1984.

    Google Scholar 

  71. Gallagher C, Golgar D, Mahoney P, McGill J. Measurement of spine density in normal and osteoporotic subjects using computed tomography: relationship of spine density to fracture threshold and fracture index.J Comput Assist Tomogr1985; 9: 634–635.

    Article  Google Scholar 

  72. Raymakers JA, Hoekstra O, Van Putten J, Kerkhoff H, Duursma SA. Osteoporosis fracture prevalence and bone mineral mass measured with CT and DPA.Skeletal Radiol1986; 15: 191–197.

    Article  PubMed  CAS  Google Scholar 

  73. Reinbold WD, Reiser UJ, Harris ST, Ettinger B, Genant HK. Measurement of bone mineral content in early postmenopausal and postmenopausal osteoporotic women. A comparison of methods.Radiology1986; 160: 469–478.

    PubMed  CAS  Google Scholar 

  74. Sambrook PN, Bartlett C, Evans R, Hesp R, Katz D, Reeve J. Measurement of lumbar spine bone mineral: a comparison of dual photon absorptiometry and computed tomography.BrJRadiol 1985;58: 621–624.

    CAS  Google Scholar 

  75. Genant HK, Ettinger B, Harris ST, Block JE, Steiger P. Quantitative computed tomography in assessment of osteoporosis. In: Riggs BL, Melton LJ, eds.Osteoporosis: Etiology Diagnosis and ManagementNew York: Raven, 1988, pp. 221–249.

    Google Scholar 

  76. Richardson ML, Genant HK, Cann CE, et al. Assessment of metabolic bone disease by quantitative computed tomography.Clin Orth Rel Res1985; 195: 224–238.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonnick, S.L. (1996). Bone Densitometry Techniques in Modern Medicine. In: Rosen, C.J. (eds) Osteoporosis. Current Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0221-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0221-9_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6668-6

  • Online ISBN: 978-1-4612-0221-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics