Advertisement

Dissemination of Catabolic Plasmids among Desiccation-Tolerant Bacteria in Soil Microcosms

  • Frederic Weekers
  • Christian Rodriguez
  • Philippe Jacques
  • Maximilien Mergeay
  • Philippe Thonart
Chapter
Part of the ABAB Symposium book series (ABAB)

Abstract

The dissemination of catabolic plasmids was compared to bioaugmentation by strain inoculation in microcosm experiments. When Rhodococcus erythropolis strain T902, bearing a plasmid with trichloroethene and isopropylbenzene degradation pathways, was used as the inoculum, no transconjugant was isolated but the strain remained in the soil. This plasmid had a narrow host range. Pseudomonas putida strain C8S3 was used as the inoculum in a second approach. It bore a broad host range conjugative plasmid harboring a natural transposon, RP4::Tn4371, responsible for biphenyl and 4-chlorobiphenyl degradation pathways. The inoculating population slowly decreased from its original level (106 colony-forming units [CFU]/g of dry soil) to approx 3 x 102 CFU/g of dry soil after 3 wk. Transconjugant populations degrading biphenyl appeared in constant humidity soil (up to 2 x 103 CFU/g) and desiccating soil (up to 104 CFU/g). The feasibility of plasmid dissemination as a bioaugmentation technique was demonstrated in desiccating soils. The écologie significance of desiccation in bioaugmentation was demonstrated: it upset the microbial ecology and the development of transconjugants.

Index Entries

Bioaugmentation drought tolerance conjugation plasmid dissemination microcosm isopropylbenzene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jasper, D. (1994), Aust. J. Soil Res. 32, 1301–1319.CrossRefGoogle Scholar
  2. 2.
    Rittmann, B. and Whiteman, R. (1994), Water Qual. Int. 1, 12–16.Google Scholar
  3. 3.
    Möller, J., Steckel, T., Wedebye, E., and Werstermann, P. (1995), Bull. Environ. Contam. Toxicol. 54, 913–918.CrossRefGoogle Scholar
  4. 4.
    Vogel, T. (1996), Curr. Ovin. Biotechnol. 7, 311–316.CrossRefGoogle Scholar
  5. 5.
    Weekers, F., Jacques, P., Springael, D., Mergeay, M., Diels, L., and Thonart, P. (1998), Appl. Biochem. Biotechnol. 70–72, 311–322.CrossRefGoogle Scholar
  6. 6.
    Weekers, F., Jacques, P., Springael, D., Mergeay, M., Diels, L., and Thonart, P. (1996), Med. Vac. Landbouww. Univ. Gent 61/4b, 2161–2164.Google Scholar
  7. 7.
    Potts, M. (1994), Microbiol. Rev. 58, 755–805.Google Scholar
  8. 8.
    Weekers, F., Jacques, P., Springael, D., Mergeay, M., Diels, L., and Thonart, P. (1999), Appl. Biochem. Biotechnol. 77–79, 251–266.CrossRefGoogle Scholar
  9. 9.
    Sayler, G., Hooper, S., Layton, A., and King, J. (1990), in Microbial Ecology, Fietcher, M., ed., Springer-Verlag, New York.Google Scholar
  10. 10.
    Brokamp, A. and Schmidt, F. (1991), Curr. Microbiol. 22, 299–306.CrossRefGoogle Scholar
  11. 11.
    Daane, J., Molina, J., Berry, E., and Sadowski, M. (1996), Appl. Environ. Microbiol. 62, 515–521.Google Scholar
  12. 12.
    De Rore, H., Demolder, K., De Wilde, K., Top, E., Houwen, F., and Verstraete, W. (1994), FEMS Microbiol. Ecol. 15, 71–78.CrossRefGoogle Scholar
  13. 13.
    Di Giovanni, G., Neilson, J., Pepper, I., and Sinclair, N. (1996), Appl. Environ. Microbiol. 62, 2521–2526.Google Scholar
  14. 14.
    Top, E., Van Daele, P., De Saeyer, N., and Forney, L. (1998), Antonie Van Leeuwenhoek 73, 87–94.CrossRefGoogle Scholar
  15. 15.
    Dong, Q., Springael, D., Schoters, J., Nuyts, G., Mergeay, M., and Diels, L. (1998), Water Sci. Technol. 37, 465–468.CrossRefGoogle Scholar
  16. 16.
    Margesin, R. and Schinner, F. (1997), J. Bas. Microbiol. 37, 217–227.CrossRefGoogle Scholar
  17. 17.
    Dabrock, B., Kesseler, M., Averhoff, B., and Gottschalk, G. (1994), Appl. Environ. Microbiol. 60, 853–860.Google Scholar
  18. 18.
    Springael, D., Kreps, S., and Mergeay, M. (1993), J. Bacterial. 175, 1674–1681.Google Scholar
  19. 19.
    Weekers, F., Jacques, P., Springael, D., Mergeay, M., Diels, L., and Thonart, P. (2000), in Focus on Biotechnology, Hofman, M. and Anne, J., eds., Kluwer Academic, Amsterdam.Google Scholar
  20. 20.
    Galli, E., Barbieri, P., and Bestteti, G. (1992), in Pseudomonas: Molecular Biology and Biotechnology, Galli, E., Silver, S., and Withold, B., eds., American Society for Micro-biology, Washington, DC.Google Scholar
  21. 21.
    Kesseler, M., Dabbs, E., Averhoff, B., and Gottschalk, G. (1996), Microbiology 142, 3241–3251.CrossRefGoogle Scholar
  22. 22.
    Paul, E. and Clark, F. (1988), Soil Microbiology and Biochemistry, Academic Press, London.Google Scholar
  23. 23.
    Mergeay, M. and Springael, D. (1996), in Bioremediation Protocols, Sheehan, D., ed., Humana Press, Totowa, NJ.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Frederic Weekers
    • 1
  • Christian Rodriguez
    • 1
  • Philippe Jacques
    • 2
  • Maximilien Mergeay
    • 3
  • Philippe Thonart
    • 1
    • 2
  1. 1.Walloon Center for Industrial BiologyUniversity of LiegeLiegeBelgium
  2. 2.Walloon Center for Industrial BiologyAgricultural University of GemblouxGemblouxBelgium
  3. 3.Belgian Nuclear Research CenterMolBelgium

Personalised recommendations