Advertisement

Fermentation Performance Assessment of a Genomically Integrated Xylose-Utilizing Recombinant of Zymomonas mobilis 39676

  • Hugh G. Lawford
  • Joyce D. Rousseau
Chapter
Part of the ABAB Symposium book series (ABAB)

Abstract

In pH-controlled batch fermentations with pure sugar synthetic hard-wood hemicellulose (1% [w/v] glucose and 4% xylose) and corn stover hydrolysate (8% glucose and 3.5% xylose) lacking acetic acid, the xylose-utilizing, tetracycline (Tc)-sensitive, genomically integrated variant of Zymomonas mobilis ATCC 39676 (designated strain C25) exhibited growth and fermentation performance that was inferior to National Renewable Energy Laboratory’s first-generation, Tc-resistant, plasmid-bearing Zymomonas recombinants. With C25, xylose fermentation following glucose exhaustion was markedly slower, and the ethanol yield (based on sugars consumed) was lower, owing primarily to an increase in lactic acid formation. There was an apparent increased sensitivity to acetic acid inhibition with C25 compared with recombinants 39676:pZB4L, CP4:pZB5, and ZM4:pZB5. However, strain C25 performed well in continuous fermentation with nutrient-rich synthetic corn stover medium over the dilution range 0.03–0.06/h, with a maximum process ethanol yield at D = 0.03/h of 0.46 g/g and a maximum ethanol productivity of 3 g/(L-h). With 0.35% (w/v) acetic acid in the medium, the process yield at D = 0.04/h dropped to 0.32 g/g, and the maximum productivity decreased by 50% to 1.5 g/(L-h). Under the same operating conditions, rec Zm ZM4:pZB5 performed better; however, the medium contained 20 mg/L of Tc to constantly maintain selective pressure. The absence of any need for antibiotics and antibiotic resistance genes makes the chromosomal integrant C25 more compatible with current regulatory specifications for biocatalysts in large-scale commercial operations.

Index Entries

Recombinant Zymomonas C25 genomic integrant xylose ethanol biomass hydrolysate acetate inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lawford, G. R., Lavers, B. H., Good, D., Charley, R. C., Fein, J. E. and Lawford, H. G. (1982), in Proceedings of the International Symposium on Ethanol from Biomass, Duckworth, H., ed., Royal Society of Canada, Ottawa, Canada, pp. 482–507.Google Scholar
  2. 2.
    Lawford, H. G. (1987), US Patent 4,647,534.Google Scholar
  3. 3.
    Lawford, H. G. (1988), in VIII International Symposium on Alcohol Fuels, New Energy and Industrial Technology Development Organization, Tokyo, Japan, pp. 21–27.Google Scholar
  4. 4.
    Lawford, H. G. (1988), in Canadian Power Alcohol Conference, Candlish, B., ed., Biomass Energy Institute, Winnipeg, Manitoba, Canada, pp. 245–251.Google Scholar
  5. 5.
    Lacis, L. S. and Lawford, H. G. (1989), in Bioenergy— Proceedings of the 7th Canadian Bioenergy R&D Seminar, Hogen, E., ed., NRC Canada, Ottawa, pp. 411–416.Google Scholar
  6. 6.
    Lawford, H. G. and Rousseau, J. D. (1991), in Energy from Biomass and Wastes XV, Klass, D. L., ed., Institute Gas Technology, Chicago, pp. 583–622.Google Scholar
  7. 7.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267,240–243.CrossRefGoogle Scholar
  8. 8.
    Picataggio, S., Zhang, M., Eddy, C. K., Deanda, K., and Finkelstein, M. (1996), US Patent 5,514,583.Google Scholar
  9. 9.
    Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 269–286.CrossRefGoogle Scholar
  10. 10.
    Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63–65,287–304.CrossRefGoogle Scholar
  11. 11.
    Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70–72,161–172.CrossRefGoogle Scholar
  12. 12.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–72,353–368.CrossRefGoogle Scholar
  13. 13.
    Lawford, H. G. and Rousseau, J. D. (1999), Appl. Biochem. Biotechnol. 77–79,235–249.Google Scholar
  14. 14.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem. Biotechnol. 77–79,191–204.CrossRefGoogle Scholar
  15. 15.
    Lawford, H. G. and Rousseau, J. D. (2000), Appl. Biochem. Biotechnol. 84–86,277–294.CrossRefGoogle Scholar
  16. 16.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 295–310.CrossRefGoogle Scholar
  17. 17.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21,391–401.CrossRefGoogle Scholar
  18. 18.
    Sprenger, G. A. (1993),/. Bacteriol. 27,225–237.Google Scholar
  19. 19.
    Feldman, S. D., Sahm, H., and Sprenger, G. A. (1992), Appl. Microbiol. 38, 354–361.Google Scholar
  20. 20.
    Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K., and Finkelstein, M. (1998), US Patent 5,726,053.Google Scholar
  21. 21.
    Deanda, K. A., Eddy, C., Zhang, M., and Picataggio, S. (1996), Appl. Environ. Microbiol. 62,4465–4470.Google Scholar
  22. 22.
    Zhang, M., Chou, Y. C., Lai, X. K., Milstrey, S., Danielson, N., Evans, K., Mohagheghi, A., and Finkelstein, M. (1999), 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, CO (abstract no. 2–16).Google Scholar
  23. 23.
    Rogers, P. L., Joachimsthal, E. L., and Haggett, K. D. (1997), /. Australasian Biotechnol. 7,304–309.Google Scholar
  24. 24.
    Joachimsthal, E., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77–79 147–157.CrossRefGoogle Scholar
  25. 25.
    Krishnan, M. S., Blanco, M., Shattuck, C. K., Nghiem, N. P., and Davison, B. H. (2000), Appl. Biochem. Biotechnol. 84–86,525–542.CrossRefGoogle Scholar
  26. 26.
    Joachimsthal, E. L. and Rogers, P. L. (2000), Appl. Biochem. Biotechnol. 84–86,343–356.CrossRefGoogle Scholar
  27. 27.
    Dennison, E. and Abbas, C. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 2–04), Humana, Totowa, NJ.Google Scholar
  28. 28.
    Ngheim, N. P., Krishnan, M. S., Davison, B. H., Jackson, A. N., and Cofer, T. M. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 3–25), Humana, Totowa, NJ.Google Scholar
  29. 29.
    Dowe, N., Newman, M. M., Mohagheghi, A., and McMillan, J. D. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 6–20), Humana, Totowa, NJ.Google Scholar
  30. 30.
    McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., ACS Symposium Series 566, American Chemical Society, Washington, DC, pp. 411–437.CrossRefGoogle Scholar
  31. 31.
    Foody, B. F. (2000), 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, CO (abstract no. 6–01), Humana, Totowa, NJ.Google Scholar
  32. 32.
    Lawford, H. G., Rousseau, J. D., and Tolan, J. S. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN, Humana, Totowa, NJ.Google Scholar
  33. 33.
    Foody, B. F. and Tolan, J. S. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 6–07), Humana, Totowa, NJ.Google Scholar
  34. 34.
    Zhang, M., Chou, Y. C., Mohagheghi, A., Evans, K., Milstrey, S., Lai, X. K., and Finkelstein, M. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 2–03), Humana, Totowa, NJ.Google Scholar
  35. 35.
    Zhang, M., Chou, Y.-C., Picataggio, S. K., and Finkelstein, M. (1998), US Patent 5,843,760.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  1. 1.Bio-engineering Laboratory, Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations