Skip to main content

The Epicardium and the Formation of the Coronary Vasculature

  • Chapter
Formation of the Heart and Its Regulation

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

  • 140 Accesses

Abstract

In early development the epicardium as an extracardiac organ envelops the initially bare myocardial surface. In this way, a three-layered organ is formed consisting of an inner endocardium, the muscular myocardium, and the covering epicardium (Manasek, 1969; Ho and Shimada, 1978; Viragh and Challice, 1981; Hiruma and Hirakow, 1988). The epicardium proved to be the source for novel cell populations migrating into the myocardial wall, which play major, but not yet fully comprehended, roles in heart development. It has been shown in a number of studies, using knockout mice, that when the epicardium is missing, the coronary vessels fail to develop properly (Kwee et al, 1995; Yang et al, 1995), usually leading to embryonic death at a very specific point in development. It must be concluded that the formation of the coronary vasculature is one of the features of heart development depending on epicardial differentiation. Therefore, we describe and discuss first the differentiation of the epicardial-derived cells (EPDCs), followed by the development of the endothelium that does not derive from the epicardial organ proper, and the smooth muscle cells and adventitial fibroblasts of the coronary vessel wall. Finally, we discuss the differentiation of the vascular tree, starting with a plexiform system of sinusoidal vessels, developing into arteries and veins, interconnected by a capillary network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  • Aikawa, E., and Kawano, J. (1982). Formation of coronary arteries sprouting from the primitive aortic sinus wall of the chick embryo. Experientia 38:816–818.

    Article  PubMed  CAS  Google Scholar 

  • Bolender, D.L., Olson, M.D., and Markwald, R.R. (1990). Coronary vessel vasculogenesis. In: Bockman, D.E., and Kirby, M.L., eds. Embryonic origins of defective heart development. Ann NYAcad Sci 588:340–344.

    Google Scholar 

  • Carmeliet, P., Dor, Y., Herbert, J.M., et al. (1998). Role of HIF-1a in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 194:485–490.

    Article  Google Scholar 

  • Carmeliet, P., Ng, Y.S., Nuyens, D., et al. (1999). Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med 5:495–502.

    Article  PubMed  CAS  Google Scholar 

  • Chaoui, R., Tennsted, C., Goldner, B., and Bollmann, R. (1997). Prenatal diagnosis of ventriculo-coronary communications in a second-trimester fetus using transvaginal and transabdominal color Doppler sonography. Ultrasound Obstet Gynaecol 9:1–4.

    Article  Google Scholar 

  • Coffin, J.D., and Poole, T.J. (1988). Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 102:735–748.

    PubMed  CAS  Google Scholar 

  • De Almeida, O.P., Bohm, G.M., De Carvalho, P.M., and De Carvalho, A.P. (1975). The cardiac muscle in the pulmonary vein of the rat: a morphological and electrophysiological study. J Morphol 145:409–434.

    Article  Google Scholar 

  • Endo, H., Ogawa, K., Kurohmaru, M., and Hayashi, Y. (1996). Development of cardiac musculature in the cranial vena cava of rat embryos. Anat Embryol 193:501–504.

    Article  PubMed  CAS  Google Scholar 

  • Freedom, R.M., Wilson, G., Trusler, G.A., Williams, W.G., and Rowe, R.D. (1983). Pulmonary atresia and intact ventricular septum. A review of the anatomy, myocardium, and factors influencing right ventricular growth and guidelines for surgical intervention. Scand J Thorac Cardiovasc Surg 17:1–28.

    Article  PubMed  CAS  Google Scholar 

  • Gittenberger-de Groot, A.C., Sauer, U., Bindl, L., Babic, R., Essed, C.E., and Buhlmeyer, K. (1988). Competition of coronary arteries and ventriculo-coronary arterial communications in pulmonary atresia with intact ventricular septum. Int J Cardiol 18:243–258.

    Article  PubMed  CAS  Google Scholar 

  • Gittenberger-de Groot, A.C., Vrancken Peeters, M.P.F.M., Mentink, M.M.T., Gourdie, R.G., and Poelmann, R.E. (1998). Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82:1043–1052.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, H.L., Goldstein, J., Borer, J.S., et al. (1983). Determination of the angiographic appearance of coronary collateral vessels: the importance of supplying and recipient arteries. Am J Cardiol 52:434–439.

    Article  Google Scholar 

  • Gonzalez-Crussi, F. (1971). Vasculogenesis in the chick embryo. An ultrastructural study. Am J Anat 130:441–460.

    Article  PubMed  CAS  Google Scholar 

  • Hadziselimovic, H., and Secerov, D. (1979). Superficial anastomoses of blood vessels in the human heart. Acta Anat 104:268–278.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V., and Hamilton, H.L. (1951). A series of normal stages in development of the chick embryo. J Morphol 88:49–92.

    Article  Google Scholar 

  • Hines, B.A., Brandt, P.W.T., and Agnew, T.M. (1981). Unusual intercoronary artery communication: a case report. Cardiovasc Int Radiol 4:259–263.

    Article  CAS  Google Scholar 

  • Hirakow, R., and Hiruma, T. (1981). Scanning electron microscopic study on the development of primitive blood vessels in chick embryos at the early somite stage. Anat Embryol 163:299–306.

    Article  PubMed  CAS  Google Scholar 

  • Hiruma, T., and Hirakow, R. (1988). Epicardial formation in embryonic chick heart: computer-aided reconstruction, scanning, and transmission electron microscopic studies. Am J Anat 184:129–138.

    Article  Google Scholar 

  • Ho, E., and Shimada, Y. (1978). Formation of the epicardium studied with scanning electron microscopy. Dev Biol 66:579–585.

    Article  PubMed  CAS  Google Scholar 

  • Hood, L.C., and Rosenquist, T.H. (1992). Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effect of neural crest ablation. Anat Rec 234:291–300.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, M.L., Gale, T.F., and Stewart, D.E. (1983). Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059–1061.

    Article  PubMed  CAS  Google Scholar 

  • Kwee, L., Baldwin, H.S., Min Shen, H., et al. (1995). Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:489–503.

    PubMed  CAS  Google Scholar 

  • Manasek, F.J. (1969). Embryonic development of the heart. II. Formation of the epicardium. J Embryol Exp Morphol 22:333–348.

    PubMed  CAS  Google Scholar 

  • Manasek, F.J. (1971). The ultrastructure of embryonic myocardial blood vessels. Dev Biol 26:42–54.

    Article  PubMed  CAS  Google Scholar 

  • Masani, F. (1986). Node-like cells in the myocardial layer of the pulmonary vein of rats: an ultrastructural study. J Anat 145:133–142.

    PubMed  CAS  Google Scholar 

  • McDonald, J.A., Broekelmann, T.J., Matheke, M.L., Crouch, E., Koo, M., and Kuhn, C. III. (1986). A monoclonal antibody to the carboxyterminal domain of procollagen type I visualizes collagen-synthesizing fibroblasts. Detection of an altered fibroblast phenotype in lungs of patients with pulmonary fibrosis. J Clin Invest 78:1237–1244.

    Article  PubMed  CAS  Google Scholar 

  • Mikawa, T., and Fischman, D.A. (1992). Retroviral analysis of cardiac morphogenesis: dis-continuous formations of coronary vessels. Proc Natl Acad Sci USA 89:9504–9508.

    Article  PubMed  CAS  Google Scholar 

  • Mikawa, T., and Gourdie, R.G. (1996). Pericardial mesoderm generates population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, H., and Gloobe, H. (1970). Myocardial atrio-venous junctions and extensions (sleeves) over the pulmonary and caval veins. Anatomical observations in various mammals. Thorax 25:317–324.

    Article  PubMed  CAS  Google Scholar 

  • Noden, D.M. (1989). Embryonic origins and assembly of blood vessels. Annu Rev Respir Dis 140:1097–1103.

    CAS  Google Scholar 

  • Pardanaud, L., Altmann, C., Kitos, P., Dieterlen-Lievre, F., and Buck, C.A. (1987). Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349.

    PubMed  CAS  Google Scholar 

  • Poelmann, R.E., Gittenberger-de Groot, A.C., Mentink, M.M.T., Bokenkamp, R., and Hogers, B. (1993). Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 73:559–568.

    Article  PubMed  CAS  Google Scholar 

  • Poelmann, R.E., Mikawa, T., and Gittenberger-de Groot, A.C. (1998). Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev Dyn 212:373–384.

    Article  PubMed  CAS  Google Scholar 

  • Poole, T.J., and Coffin, J.D. (1988). Developmental angiogenesis: quail embryonic vasculature. Scanning Microsc 2:443–448.

    PubMed  CAS  Google Scholar 

  • Risau, W., and Flamme, I. (1995). Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91. Rychter, Z., and Ostadal, B. (1971). Mechanism of the development of the coronary arteries in the chick embryo. Folia Morphol 19:113–124.

    Google Scholar 

  • Sinning, A.R., Lepera, R.C., and Markwald, R.R. (1988). Initial expression of type I collagen in chick cardiac mesenchyme is dependent upon myocardial stimulation. Dev Biol 130:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Tomanek, R.J., Ratajska, A., Kitten, G.T., Yue, X., and Sandra, A. (1999). Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. Dev Dyn 215:54–61.

    Article  PubMed  CAS  Google Scholar 

  • Tsukuda, T., Tippens, D., Gordon, D., Ross, R., and Gown, A.M. (1987). HHF35, a muscleactin-specific monoclonal antibody. 1. Immunohistochemical and biochemical characterization. Am J Pathol 126:51–60.

    Google Scholar 

  • Verberne, M.E., Gittenberger-de Groot, A.C., and Poelmann, R.E. (1998). Lineage and development of the parasympathetic nervous system if the embryonic chicken heart. Anat Embryol 198:171–184.

    Article  PubMed  CAS  Google Scholar 

  • Viragh, S., and Challice, C.E. (1981). The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168.

    Article  PubMed  CAS  Google Scholar 

  • Viragh, S., Gittenberger-de Groot, A.C., Poelmann, R.E., and Kalman, F. (1993). Early development of quail heart epicardium and associated vascular and glandular structures. Anat Embryol 188:381–393.

    Article  PubMed  CAS  Google Scholar 

  • Vrancken Peeters, M.P.F.M., Gittenberger-de Groot, A.C., Mentink, M.M.T., Hungerford, J.E., Little, C.D., and Poelmann, R.E. (1997a). The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev Dyn 208:338–348.

    Article  CAS  Google Scholar 

  • Vrancken Peeters, M.P.F.M., Gittenberger-de Groot, A.C., Mentink, M.M.T., Hungerford, J.E., Little, C.D., and Poelmann, R.E. (1997b). Differences in development of coronary arteries and veins. Cardiovasc Res 36:101–110.

    Article  CAS  Google Scholar 

  • Yang, J.T., Rayburn, H., and Hynes, R.O. (1995). Cell adhesion events mediated by a4 inte-grins are essential in placental and cardiac development. Development 121:549–560.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poelmann, R.E., Mark, F.P., Peeters, M.V., Gittenberger-deGroot, A.C. (2001). The Epicardium and the Formation of the Coronary Vasculature. In: Tomanek, R.J., Runyan, R.B. (eds) Formation of the Heart and Its Regulation. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0207-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0207-3_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6662-4

  • Online ISBN: 978-1-4612-0207-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics