Skip to main content

Molecular Mechanisms of Cardiac Diversification

  • Chapter
Formation of the Heart and Its Regulation

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

The development of the functional vertebrate heart has served as an excellent model system to study the molecular, biochemical, and physiologic regulation of cellular diversification. The atria and ventricles of the mature vertebrate heart are composed of unique subsets of cardiomyocytes that are required for variations in chamber function. While this chapter has explored experimental evidence that has led to a better understanding of the initial critical steps involved in atrial and ventricular diversification, many questions are still unresolved. The atrial-ventricular fate of cardiomyocytes appears to be determined by cellular position within the cardiogenic field and affected by retinoic acid signaling. How retinoic acid and other extracelluar signaling molecules regulate these cellular decisions is not clear. Many chamber-specific molecular and biochemical markers have been isolated. However, additional chamber-specific genes need to be identified to ascertain functional variations between atrial and ventricular myocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bao, Z.Z., Bruneau, B.G., Seidman, J.G., Seidman, C.E., and Cepko, C.L. (1999). Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283:1161–1164.

    Article  PubMed  CAS  Google Scholar 

  • Barany, M. (1967). ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50(suppl):197–218.

    Article  PubMed  Google Scholar 

  • Bisaha, J.G., and Bader, D. (1991). Identification and characterization of a ventricular-specific avian myosin heavy chain, VMHC1: expression in differentiating cardiac and skeletal muscle. Dey Biol 148:355–364.

    Article  CAS  Google Scholar 

  • Carraway, K.L. 3rd, and Burden, S.J. (1995). Neuregulins and their receptors. Curr Opin Neurobiol 5:606–612.

    Article  PubMed  CAS  Google Scholar 

  • Conlon, R.A. (1995). Retinoic acid and pattern formation in vertebrates. Trends Genet 11:314–329.

    Article  PubMed  CAS  Google Scholar 

  • DeHaan, R.L. (1960). Morphogenesis of the vertebrate heart. In: DeHaan, R.L., and Upspring, H., eds. Organogenesis. Holt, Rinhart, and Winston, New York, pp. 377–419.

    Google Scholar 

  • Dyson, E., Sucov, H.M., Kubalak, S.W., Schmid-Schonbein, G.W., DeLano, F.A., Evans, R.M., Ross, J. Jr, and Chien, K.R. (1995). Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha —/— mice. Proc Natl Acad Sci USA 92:7386–7390.

    Article  PubMed  CAS  Google Scholar 

  • Dersch, H., and Zile, M.H. (1993). Induction of normal cardiovascular development in the vitamin A—deprived quail embryo by natural retinoids. Dey Biol 160:424–433.

    Article  CAS  Google Scholar 

  • Ehrman, L.A., and Yutzey, K.E. (1999). Lack of regulation in the heart forming region of avian embryos. Dey Biol 207:163–175.

    Article  CAS  Google Scholar 

  • Evans, D., Miller, J.B., and Stockdale, F.E. (1988). Developmental patterns of expression and coexpression of myosin heavy chains in atria and ventricles of the avian heart. Dey Biol 127:376–383.

    Article  CAS  Google Scholar 

  • Garcia-Martinez, V., and Schoenwolf, G.C. (1993). Primitive-streak origin of the cardiovascular system in avian embryos. Dey Biol 159:706–719.

    Article  CAS  Google Scholar 

  • Gassmann, M., Casagranda, F., Orioli, D., Simon H., Lai, C., Klein, R., and Lemke, G. (1995). Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378:390–394.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Sanchez, A., and Bader, D. (1984). Immunochemical analysis of myosin heavy chains in the developing chicken heart. Dev Biol 103:151–158.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Sanchez, A., and Bader, D. (1990). In vitro analysis of cardiac progenitor cell differentiation. Dev Biol 139:197–209.

    Article  PubMed  CAS  Google Scholar 

  • Gruber, P.J., Kubalak, S.W., and Chien, K.R. (1998). Downregulation of atrial markers during cardiac chamber morphogenesis is irreversible in murine embryos. Development 125:4427–4438.

    PubMed  CAS  Google Scholar 

  • Hamburger, V., and Hamilton, H. (1951). A series of normal stages in the development of the chick embryo. J Morphol 88:49–92.

    Article  Google Scholar 

  • Han, Y., Dennis, J.E., Cohen-Gould, L., Bader, D.M., and Fischman, D.A. (1992). Expression of sarcomeric myosin in presumptive myocardium of chicken embryos occurs within six hours of myocyte commitment. Dev Dyn 193:257–265.

    Article  PubMed  CAS  Google Scholar 

  • He, C.Z., and Burch, J.B. (1997). The chicken GATA-6 locus contains multiple control regions that confer distinct patterns of heart region-specific expression in transgenic mouse embryos. J Biol Chem 272:28550–28556.

    Article  PubMed  CAS  Google Scholar 

  • Heine, U.I., Roberts, A.B., Munoz, E.F., Roche, N.S., and Sporn, M.B. (1985). Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo. Virchows Arch [B] 50:135–152.

    Article  CAS  Google Scholar 

  • Hoh, J.F., McGrath, P.A., and Hale, P.T. (1978). Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thryoxine replacement. J Mol Cell Cardiol 10:1053–1076.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.F., Simon, H., Chen, H., Bates, B., Hung, M.C., and Hauser, C. (1995). Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.J., Hickey, R., Zhu, H., and Chien, K.R. (1994). Positive regulatory elements (HF-la and HF-1b) and a novel negative regulatory element (HF-3) mediate ventricular muscle-specific expression of myosin light chain 2-lucifierase fusion genes in transgenic mice. Mol Cell Biol 14:1220–1229.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.J., Ross, R.S., Rockman, H.A., et al. (1992). Myosin light chain-2 luciferase trans-genic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene. J Biol Chem 267:15875–15885.

    PubMed  CAS  Google Scholar 

  • Logan, M., and Mohun, T. (1993). Induction of cardiac muscle differentiation in isolated animal pole explants of Xenopus laevis embryos. Development 118:865–875.

    PubMed  CAS  Google Scholar 

  • Lompre, A.M., Nadal-Ginard, B., and Mandavi, V. (1984). Expression of the cardiac ventricular alpha-and beta-myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem 259:6437–6446.

    PubMed  CAS  Google Scholar 

  • Lyons, G.E., Schiaffino, S., Sassoon, D., Barton, P., and Buckingham, M. (1990). Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol 111:2427–2436.

    Article  PubMed  CAS  Google Scholar 

  • Mandavi, V., Izumo, S., and Nadal-Ginard, B. (1987). Develpmental and hormonal regulation of sarcomeric myosin heavy chain gene family. Circ Res 60:804–814.

    Article  Google Scholar 

  • Mangelsdorf, D.J., Borgmeyer, U., Heyman, R.A., Zhou, J.Y., Ong, E.S., Oro, A.E., Kakizuka, A., and Evans, R.M. (1992). Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6:329–344.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D., and Birchmeier, C. (1995). Multiple essential functions of neuregulin in development. Nature 378:386–390.

    Article  PubMed  CAS  Google Scholar 

  • Moss, J.B., Xavier-Neto, J., Shapiro, M.D., et al. (1998). Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol 199:55–71.

    Article  PubMed  CAS  Google Scholar 

  • Ng, W.A., Grupp, I.L., Subramaniam, A., and Robbins, J. (1991). Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circ Res 68:1742–1750.

    Article  PubMed  CAS  Google Scholar 

  • Nikovits, W., Wang, G.F., Feldman, J.L., et al. (1996). Isolation and characterization of an avian slow myosin heavy chain gene expressed during embryonic skeletal muscle fiber formation. J Biol Chem 271:17047–17056.

    Article  PubMed  CAS  Google Scholar 

  • Oana, S., Machida, S., Hiratsuka, E., Furutani, Y., Momma, K., Takao, A., and Matsuoka, R. (1998). The complete sequence and expression patterns of the atrial myosin heavy chain in the developing chick. Biol Cell 90(9):605–613.

    PubMed  CAS  Google Scholar 

  • O’Brien, T.X., Lee, K.J., and Chien, K.R. (1993). Positional information of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Natl Acad Sci USA 90:5157–5161.

    Article  PubMed  Google Scholar 

  • Osmond, M.K., Butler, A.J., Voon, F.C., and Bellairs, R. (1991). The effects of retinoic acid on heart formation in the early chick embryo. Development 113:1405–1417.

    PubMed  CAS  Google Scholar 

  • Patten, B.M. (1929). The Early Embryology of the Chick. Blakiston, Philadelphia.

    Google Scholar 

  • Rosenquist, G.C. (1985). Migration of precardiac cells from their origin in the epiblast until they form the definitive heart in the chick embryo. In: Ferrans, V.J., Rosenquist, G., and Weinstein, C., eds. Cardiac Morphogenesis. Elsevier, New York, pp. 44–53.

    Google Scholar 

  • Rosenquist, G.C., and DeHaan, R.L. (1966). Migration of precardiac cells in the chick embryo: a radiographic study. Carnegie Inst Wash Contrib Embryol 38:111–121.

    Google Scholar 

  • Ross, R.S., Navankasattusas, S., Harvey, R.P., and Chien, K.R. (1996). An HF-la/HF1b/MEF-2 combinatorial element confers cardiac ventricular specificity and established an anterior-posterior gradient of expression. Development 122:1799–1809.

    PubMed  CAS  Google Scholar 

  • Ruzicka, D.L., and Schwartz, R.J. (1988). Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. J Cell Biol 107:2575–2586.

    Article  PubMed  CAS  Google Scholar 

  • Sater, A.K., and Jacobson, A.G. (1989). The specification of heart mesoderm occurs during gastrulation in Xenopus laevis. Development 105:821–830.

    CAS  Google Scholar 

  • Schwartz, K., Lecarpentier, Y., Martin, J.L., Lompre, A.M., Mercadier, J.J., and Swynghedauw, B. (1981). Myosin isoenzymic distribution correlates with speed of myocardial contraction. J Mol Cell Cardiol 13:1071–1075.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, A.M., Umeda, P.K., Kavinsky, C.J., et al. (1982). Molecular cloning of mRNA sequences for cardiac alpha-and beta-form myosin heavy chains: expression in ventricles of normal, hypothryoid, and thyrotoxic rabbits. Proc Natl Acad Sci USA 79:5847–5851.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S., and Dickman, E.D. (1997). New insights into retinoid signalin in cardiac development and physiology. Trends Cardiovasc Med 7:324–329.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, D., Thomas, T., Lin, Q., Kirby, M.L., Brown, D., and Olson, E.N. (1997). Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16:154–160.

    Article  PubMed  CAS  Google Scholar 

  • Stainier, D.Y., and Fishman, M.C. (1992). Patterning the zebrafish heart tube: aquisition of anteroposterior polarity. Dev Biol 153:91–101.

    Article  PubMed  CAS  Google Scholar 

  • Sucov, H.M., Dyson, E., Gumeringer, C.L., Price, J., Chien, K.R., and Evans, R.M. (1994). RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8:1007–1018.

    Article  PubMed  CAS  Google Scholar 

  • Twal, W., Roze, L., and Zile, M.H. (1995). Anti-retinoic acid monoclonal antibody localizes all-trans-retinoic acid in target cells and blocks normal development in early quail embryo. Dev Biol 168:225–234.

    Article  PubMed  CAS  Google Scholar 

  • Yu, V.C., Delsert, C., Andersen, B., Holloway, J.M., Devary, O.V., Naar, A.M., Kim, S.Y., Boutin, J.M., Glass, C.K., and Rosenfeld, M.G. (1991). RXR beta: A coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 67:1251–1266.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.F., Nikovits, W., Schleinitz, M., and Stockdale, F.E. (1996). Atrial chamber-specific expression of the slow myosin heavy chain 3 gene in the embryonic heart. J Biol Chem 271:19836–19845.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.F., Nikovits, W., Schleinitz, M., and Stockdale, F.E. (1998). A positive GATA element and a negative vitamin D receptor-like element control atrial chamber-specific expression of a slow myosin heavy-chain gene during cardiac morphogenesis. Mol Cell Biol 18:6023–6034.

    PubMed  CAS  Google Scholar 

  • Wilson, J.G., and Warkany, J. (1949). Aortic arch and cardiac anomalies in the offspring of vitamin A deficient rats. Am J Anat 85:113–155.

    Article  PubMed  CAS  Google Scholar 

  • Xavier-Neto, J., Neville, C.M., Shapiro, M.D., et al. (1999). A retinoic acid-inducible trans-genic marker of sino-atrial development in the mouse heart. Development 126:2677–2687.

    PubMed  CAS  Google Scholar 

  • Yutzey, K., Gannon, M., and Bader, D. (1995). Diversification of cardiomyogenic cell lin-eages in vitro. Dev Biol 170:531–541.

    Article  PubMed  CAS  Google Scholar 

  • Yutzey, K.E., Rhee, J.T., and Bader, D. (1994). Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development 120:871–883.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Shafiq, S.A., and Bader, D. (1986). Detection of a ventricular-specific myosinheavy chain in adult and developing chicken heart. J Cell Biol 102:1480–1484.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, D., McCaffery, P., Ivins, K.J., et al. (1996). Molecular identification of a majorretinoic-acid-synthesizing enzyme, a retinaldehyde-specific dehydrogenase. Eur Journ Biochem 240:15–22.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Croissant, J.D., Carpenter, S., Bader, D. (2001). Molecular Mechanisms of Cardiac Diversification. In: Tomanek, R.J., Runyan, R.B. (eds) Formation of the Heart and Its Regulation. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0207-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0207-3_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6662-4

  • Online ISBN: 978-1-4612-0207-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics