Skip to main content

Differentially Expressed Genes and Cardiac Morphogenesis

  • Chapter
Formation of the Heart and Its Regulation

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

At day 8.0 p.c., mouse Xin is strongly expressed in the outflow tract and sinus venosus of the developing heart tube. The mXin-positive cell layer in the developing sinus venosus is continuous with the mXin-negative endocardial layer of ventricle. At day 15 p.c., mXin messages are found in the myocardium but neither in endocardium nor in endocardial cushion. The Xin protein detected from adult rat or mouse heart or mouse skeletal muscle line C2C12 has molecular mass of 155 kd, whereas the size of the Xin protein from chicken heart is significantly larger. The expression of Xin protein in the differentiating C2C12 cells precedes the expression of skeletal muscle-specific tropomyosins. The Xin protein appears to be colocalized with N-cadherin and f3-catenin. In myogenesis, the Xin gene is downstream of Nkx2. 5 and MEF-2c and upstream of myofibrillar protein genes, such as myosin heavy chain and tropomyosins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adolph, E.A., Subramaniam, A., Cserjesi, P., Olson, E.N., and Robbins, J. (1993). Role of myocyte-specific enhancer-binding factor (MEF2) in transcriptional regulation of the a-cardiac myosin heavy chain gene. J Biol Chem 268:5349–5352.

    PubMed  CAS  Google Scholar 

  • Amacher, S.L., Buskin, J.N., and Hauschka, S.D. (1993). Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol Cell Biol 13:2753–2764.

    PubMed  CAS  Google Scholar 

  • Andree, B., Duprez, D., Vorbusch, B., Arnold, H.-H., and Brand, T. (1998). BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech Dey 70:119–131.

    Article  CAS  Google Scholar 

  • Antin, P.B., Taylor, R.G., and Yatskievych, T. (1994). Precardiac mesoderm is specified during gastrulation in quail. Dey Dyn 200:144–154.

    Article  CAS  Google Scholar 

  • Azpiazu, N., and Frasch, M. (1993). Tinman and bagpipe: two homeobox genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dey 7:1325–1340.

    Article  CAS  Google Scholar 

  • Barth, A.I., Näthke, I.S., and Nelson, W.J. (1997). Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 9:683–690.

    Article  CAS  Google Scholar 

  • Behrens, J., von Kries, J.P., Kuhl, M., et al. (1996). Functional interaction of 13-catenin with the transcription factor LEF-1. Nature 382:638–642.

    Article  PubMed  CAS  Google Scholar 

  • Biben, C., and Harvey, R.P. (1997). Homeodomain factor Nkx2.5 controls left-right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dey 11:1357–1369.

    Article  CAS  Google Scholar 

  • Bodmer, R. (1993). The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729.

    CAS  Google Scholar 

  • Bodmer, R., and Venkatesh, T.V. (1998). Heart development in Drosophila and vertebrates: conservation of molecular mechanisms. Dey Genet 22:181–186.

    Article  CAS  Google Scholar 

  • Bouman, H.G.A., Broekhuizen, M.L.A., Baasten, M.J., Gittenberger-deGroot, A.C., and Wenink, A.C.G. (1995). A spectrum of looping disturbances in stage 34 chicken hearts after retinoic acid treatment. Anat Rec 243:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Bour, B.A., O’Brien, M.A., Lockwood, W.L., et al. (1995). Drosophila MEF2, a transcription factor that is essential for myogenesis. Genes Dev 9:730–741.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, A.Z., Logan, M., Kotecha, S., Towers, N., Sparrow, D., and Mohun, T.J. (1994). The RSRF/MEF2 protein SL1 regulates cardiac-muscle-specific transcription of a myosin light-chain gene in Xenopus embryos. Genes Dev 8:1324–1334.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Thomas, P.S., Thompson, R.P., Robert, B., Yacoub, M.H., and Barton, P.J.R. (1993). Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev Dyn 197:203–216.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.Y., and Schwartz, R.J. (1996). Recruitment of the tinman homolog Nkx2.5 by serum response factor activates cardiac a-actin gene transcription. Mol Cell Biol 16:6372–6384.

    PubMed  CAS  Google Scholar 

  • Cross, J.C., Flannery, M.L., Blanar, E., et al. (1995). Hxt encodes a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development 121:2513–2525.

    PubMed  CAS  Google Scholar 

  • Cserjesi, P., Brown, D., Lyons, G.E., and Olson, E.N. (1995). Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev Biol 170:664–678.

    Article  PubMed  CAS  Google Scholar 

  • Cserjesi, P., Lilly, B., Bryson, L., Wang, Y., Sasson, D.A., and Olson, E.N. (1992). Mhox: a mesodermally restricted homeodomain protein that binds an essential site in the muscle creatine kinase enhancer. Development 115:1087–1101.

    PubMed  CAS  Google Scholar 

  • Cserjesi, P., Lilly, B., Hinkley, C., Perry, M., and Olson, E.N. (1994). Homeodomain protein Mhox and MADS protein myocyte enhancer-binding factor-2 converge on a common elements in the muscle creatine kinase enhancer. J Biol Chem 269:16740–16745.

    PubMed  CAS  Google Scholar 

  • Cserjesi, P., and Olson, E.N. (1991). Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products. Mol Cell Biol 11:4854–4862.

    CAS  Google Scholar 

  • De la Cruz, M.V., Sanchez-Gomez, C., and Palomino, M.A. (1989). The primitive cardiac regions in the straight tube heart (stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick heart. J Anat 165:121–131.

    Google Scholar 

  • De la Pompa, J.L., Timmerman, L.A., Takimoto, H., et al. (1998). Role of the NF-ATc tran-scription factor in morphogenesis of cardiac valves and septum. Nature 392:182–186.

    Article  PubMed  Google Scholar 

  • DeHaan, R.L. (1965). Morphogenesis of the vertebrate heart. In: DeHaan, R.L., and Ursprung, H., eds. Organogenesis. Holt, Rinehart, and Winston, New York, pp. 377–419.

    Google Scholar 

  • DeRuiter, M.C., Poelmann, R.E., VanderPlas-deVries, I., Mentink, M.M.T., and Gittenberger-deGroot, A.C. (1992). The development of the myocardium and endocardium in mouse embryos. Anat Embryol 185:461–473.

    Article  PubMed  CAS  Google Scholar 

  • Donoviel, D.B., Shield, M.A., Buskin, J.N., Haugen, H.S., Clegg, C.H., and Hauschka, S.D. (1996). Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscle of transgenic mice. Mol Cell Biol 16:1649–1658.

    PubMed  CAS  Google Scholar 

  • Durocher, D., Charron, F., Warren, R., Schwartz, R.J., and Nemer, M. (1997). The cardiac transcription factor Nkx2.5 and GATA-4 are mutual cofactors. EMBO J 16:5687–5696.

    Article  PubMed  CAS  Google Scholar 

  • Durocher, D., and Nemer, M. (1998). Combinatorial interactions regulating cardiac transcription. Dev Genet 22:250–262.

    Article  PubMed  CAS  Google Scholar 

  • Edmonson, D.G., Lyons, G.E., Martin, J.F., and Olson, E.N. (1994). Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120:1251–1263.

    Google Scholar 

  • Eisenberg, L.M., and Markwald, R.R. (1995). Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, C.P. (1993). Embryology to the fore. Curr Opin Genet Dev 3:265–274.

    Article  PubMed  CAS  Google Scholar 

  • Evans, S.M., Tai, L.T., Tan, V.P., Newton, C.B., and Chien, K.R. (1994). Heterokaryons of cardiac myocytes and fibroblasts reveal that lack of dominance of the cardiac muscle phenotype. Mol Cell Biol 14:4269–4279.

    CAS  Google Scholar 

  • Firulli, A.B., McFadden, D.G., Lin, Q., Srivastava, D., and Olson, E.N. (1998). Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand 1. Nature Genet 18:266–270.

    Article  PubMed  CAS  Google Scholar 

  • Firulli, A.B., and Olson, E.N. (1997). Modular regulation of muscle gene transcription: a mechanism for muscle cell diversity. Trends Genet 13:364–369.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, M.C., and Chien, K.R. (1997). Fashioning the vertebrate heart: earliest embryonic decisions. Development 124:2099–2117.

    PubMed  CAS  Google Scholar 

  • Franco, D., Kelly, R., Lamers, W.H., Buckingham, M., and Moorman, A.F.M. (1997). Regionalized transcriptional domain of myosin light chain 3f transgenes in the embryonic mouse heart; morphogenetic implications. Dev Biol 188:17–33.

    Article  PubMed  CAS  Google Scholar 

  • Frasch, M. (1995). Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374:464–467.

    Article  PubMed  CAS  Google Scholar 

  • Gajewski, K., Kim, Y., Lee, Y.M., Olson, E.N., and Schulz, R.A. (1997). D-mef2 is a target for tinman activation during Drosophila heart development. EMBO J 16:515–522.

    Article  PubMed  CAS  Google Scholar 

  • Gannon, M., and Bader, D. (1995). Initiation of cardiac differentiation occurs in the absence of anterior endoderm. Development 121:2439–2450.

    PubMed  CAS  Google Scholar 

  • Garcia-Martinez, V., and Schoenwolf, G.C. (1993). Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol 159:706–719.

    Article  PubMed  CAS  Google Scholar 

  • Gossett, L., Kelvin, D., Sternberg, E., and Olson, E. (1989). A new myocyte-specific enhancer binding factor that recognizes a conserved element associated with multiple muscle specific genes. Mol Cell Biol 9:5022–5033.

    PubMed  CAS  Google Scholar 

  • Grepin, C., DagNino, L., Robitaille, L., Haberstroh, L., Antakly, T., and Nemer, M. (1994). A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol 14:3115–3129.

    PubMed  CAS  Google Scholar 

  • Gulick, J., Subramaniam, A., Neumann, J., and Robbins, J. (1991). Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem 266:9180–9185.

    PubMed  CAS  Google Scholar 

  • Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., and Kemler, R. (1995) Lack of a-catenin affects mouse development at gastrulation. Development 121:3529–3537.

    PubMed  CAS  Google Scholar 

  • Harvey, R.P. (1998). Links in the left/right axial pathway. Cell 94:273–276.

    Article  PubMed  CAS  Google Scholar 

  • Hatta, K., Takagi, S., Fujisawa, H., and Takeichi, M. (1987). Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 120:215–227.

    Article  PubMed  CAS  Google Scholar 

  • Heasman, J., Crawford, A., Goldstone, K., et al. (1994). Overexpression of cadherins and underexpression of 13-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79:791–803.

    Article  PubMed  CAS  Google Scholar 

  • Heikinheimo, M., Scandrett, J.M., and Wilson, D.B. (1994). Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol 164:361–373.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, J.I.E. (1995). Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 16:155–165.

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg, S.M., Sternglanz, R., Cheng, P.F., and Weintraub, H. (1995). Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol Cell Biol 15:3813–3822.

    PubMed  CAS  Google Scholar 

  • Horlick, R.A., Hobson, G.M., Patterson, J.H., Mitchell, M.T., and Benfield, P.A. (1990). Brain and muscle creatine kinase genes contain common TA-rich recognition protein-binding regulatory elements. Mol Cell Biol 10:4826–4836.

    PubMed  CAS  Google Scholar 

  • Huber, O., Bierkamp, C., and Kemler, R. (1996). Cadherins and catenins in development. Curr Opin Cell Biol 8:685–691.

    Article  PubMed  CAS  Google Scholar 

  • Iannello, R., Mar, J.H., and Ordahl, C.P. (1991). Characterization of a promoter element required for transcription in myocardial cells. J Biol Chem 266:3309–3316.

    PubMed  CAS  Google Scholar 

  • Ip, H.S., Wilson, D.B., Heinkinheimo, M., et al. (1994). The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. Mol Cell Biol 14:7517–7526.

    PubMed  CAS  Google Scholar 

  • Isaac, A., Sargent, M.G., and Cooke, J. (1997). Control of vertebrate left-right asymmetry by a snail-related zinc finger gene. Science 275:1301–1304.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, A.G. (1960). Influences of ectoderm and endoderm on heart differentiation in the newt. Dev Biol 2:138–154.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, A.G., and Sater, A.K. (1988). Features of embryonic induction. Development 104:341–359.

    PubMed  CAS  Google Scholar 

  • Jiang, Y., Tarzami, S., Burch, J.B.E., and Evans, T. (1998). Common role for each of the cGATA-4/5/6 genes in the regulation of cardiac morphogenesis. Dev Genet 22:263–277.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.C., Lyons, K.M., and Hogan, B.L.M. (1991). Involvement of bone morphogenetic protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111:531–542.

    PubMed  CAS  Google Scholar 

  • Kaufman, M.H., and Navaratnam, V. (1981). Early differentiation of the heart in mouse embryos. J Anat 133:235–246.

    PubMed  CAS  Google Scholar 

  • Komuro, I., and Izumo, S. (1993). Csx: a murine homeobox-containing genes specifically expressed in the developing heart. Proc Natl Acad Sci USA 90:8145–8149.

    Article  PubMed  CAS  Google Scholar 

  • Kume, T., Deng, K.-Y., Winfrey, V., Gould, D.B., Walter, M.A., and Hogan, B.L.M. (1998). The forkhead/winged helix gene Mfl is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93:985–996.

    CAS  Google Scholar 

  • Kuo, C.T., Morrisey, E.E., Anandappa, R., et al. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11:1048–1060.

    Article  PubMed  CAS  Google Scholar 

  • Lamers, W.H., Viragh, S.Z., Wessels, A., Moorman, A.F.M., and Anderson, R.H. (1995). Formation of the tricuspid valve in the human heart. Circ Res 91:111–121.

    CAS  Google Scholar 

  • Larabell, C.A., Torres, M., Rowning, B.A., et al. (1997). Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in Ăź-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 136:1123–1136.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.J., Hickey, R., Zhu, H., and Chien, K.R. (1994). Positive regulatory elements (HF-la and HF-1b) and a novel negative regulatory element (HF-3) mediate ventricular muscle-specific expression of myosin light-chain 2-luciferase fusion genes in transgenic mice. Mol Cell Biol 14:1220–1229.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.J., Ross, R.S., Rockman, H.A., et al. (1992). Myosin light chain-2 luciferase trans-genic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene. J Biol Chem 267:15875–15885.

    PubMed  CAS  Google Scholar 

  • Lee, Y., Shioi, T., Kasahara, H., et al. (1998). The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol Cell Biol 18:3120–3129.

    PubMed  CAS  Google Scholar 

  • Leussink, B., Brouwer, A., El Khattabi, M., Poelmann, R.E., Gittenberger-deGroot, A.C., and Meijlink, F. (1995). Expression patterns of the paired-related homeobox genes Mhox/Prx1 and S8/Prx2 suggest roles in development of the heart and the forebrain. Mech Dev 52:51–64.

    Article  PubMed  CAS  Google Scholar 

  • Liang, P., and Pardee, A.B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971.

    Article  PubMed  CAS  Google Scholar 

  • Liang, P., Zhu, W., Zhang, X., et al. (1994). Differential display using one-base anchoral oligo-dT primers. Nucleic Acids Res 22:5763–5764.

    Article  PubMed  CAS  Google Scholar 

  • Lien, C.-L., Wu, C., Mercer, B., Webb, R., Richardson, J.A., and Olson, E.N. (1999). Control of early cardiac-specific transcription of Nkx2–5 by a GATA-dependent enhancer. Development 126:75–84.

    PubMed  CAS  Google Scholar 

  • Lilly, B., Zhao, B., Ranganayakulu, G., Paterson, B.M., Schulz, R.A., and Olson, E.N. (1995). Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 267:688–693.

    CAS  Google Scholar 

  • Lin, Q., Schwarz, J., Bucana, C., and Olson, E.N. (1997). Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407.

    Article  PubMed  CAS  Google Scholar 

  • Linask, K.K. (1992). N-cadherin localization in early heart development and polar expression of Nat, K’-ATPase and integrin during pericardial coelom formation and epithelialization of the differentiating myocardium. Dev Biol 151:213–224.

    Article  PubMed  CAS  Google Scholar 

  • Linask, K.K., Knudsen, K.A., and Gui, Y.-H. (1997). N-cadherin-catenin interaction: necessary component of cardiac cell compartmentalization during early vertebrate heart development. Dev Biol 185:148–164.

    Article  PubMed  CAS  Google Scholar 

  • Lints, T.J., Parsons, L.M., Hartley, L., Lyons, I., and Harvey, R.P. (1993). Nkx2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:419–431.

    PubMed  CAS  Google Scholar 

  • Lough, J., Barron, M., Brogley, M., Sugi, Y., Bolender, D.L., and Zhu, X.L. (1996). Combined BMP-2 and FGF-4 but neither factor alone, induces cardiogenesis in nonprecardiac embryonic mesoderm. Dev Biol 178:198–202.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J.-R., McKinsey, T.A., Xu, H., Wang, D.-Z., Richardson, J.A., and Olson, E.N. (1999). FOG-2: a heart-and brain-enriched cofactor for GATA transcription factors. Mol Cell Biol 19:4495–4502.

    PubMed  CAS  Google Scholar 

  • Lyons, I., Parsons, L.M., Hartley, L., et al. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox gene Nkx2.5. Genes Dev 9:1654–1666.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, K.M., Pelton, R.W., and Hogan, B.L.M. (1990). Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development 109:833–844.

    PubMed  CAS  Google Scholar 

  • Markwald, R.R., Eisenberg, C., Eisenberg, L., Trusk, T., and Sugi, Y. (1996). Epithelial-mesenchymal transformations in early avian heart development. Acta Anat 156:173–186.

    Article  PubMed  CAS  Google Scholar 

  • Markwald, R.R., Fitzharris, T.P., and Manasek, F.J. (1997). Structural development of endocardial cushions. Am J Anat 148:85–120.

    Article  Google Scholar 

  • McGrew, M.J., Bogdanova, N., Hasegawa, K., et al. (1996). Distinct gene expression patterns in skeletal and cardiac muscle are dependent on common regulatory sequences in the MLC1/3 locus. Mol Cell Biol 16:4524–4538.

    PubMed  CAS  Google Scholar 

  • Molenaar, M., vande Wetering, M., Oosterwegel, M., et al. (1996). XTcf-3 transcription factor mediates [3-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399.

    Article  PubMed  CAS  Google Scholar 

  • Molkentin, J.D., Black, B.L., Martin, J.F., and Olson, E.N. (1996a). Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol Cell Biol 16:2627–2636.

    CAS  Google Scholar 

  • Molkentin, J.D., Firulli, A.B., Black, B.L., et al. (1996b). MEF2B is a potent transactivator expressed in early myogenic lineages. Mol Cell Biol 16:3814–3824.

    CAS  Google Scholar 

  • Molkentin, J.D., Kalvakolanu, D.V., and Markaham, B.E. (1994). Transcription factor GATA-4 regulates cardiac tissue-specific expression of the a-myosin heavy-chain gene. Mol Cell Biol 14:4947–4957.

    PubMed  CAS  Google Scholar 

  • Molkentin, J.D., Lin, Q., Duncan, S.A., and Olson, E.N. (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11:1061–1072.

    Article  PubMed  CAS  Google Scholar 

  • Molkentin, J.D., and Markham, B E (1993). Myocyte-specific enhancer-binding factor (MEF2) regulates a-cardiac myosin heavy chain gene expression in vitro and in vivo. J Biol Chem 268:19512–19520.

    PubMed  CAS  Google Scholar 

  • Molkentin, J.D., and Olson, E.N. (1996). Defining the regulatory networks for muscle development. Curr Opin Genet Dev 6:445–453.

    Article  PubMed  CAS  Google Scholar 

  • Morrisey, E.E., Ip, H.S., Lu, M.M., and Parmacek, M.S. (1996). GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol 177:309–322.

    Article  PubMed  CAS  Google Scholar 

  • Morrisey, E.E., Ip, H.S., Tang, Z., Lu, M.M., and Parmacek, M.S. (1997). GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol 183:21–36.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, A.M., Thompson, W.R., Peng, L.F., and Jones, L. (1997). Regulation of the rat cardiac troponin I gene by the transcription factor GATA-4. Biochem J 322:393–401.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, Y., Hidaka, K., Tsujino, S., et al. (1992). A single MEF-2 site is a major positive regulatory element required for transcription of the muscle-specific subunit of human phosphoglycerate mutase gene in skeletal and cardiac muscle cells. Mol Cell Biol 12:4384–4390.

    CAS  Google Scholar 

  • Nascone, N., and Mercola, M. (1995). An inductive role for the endoderm in Xenopus cardiogenesis. Development 121:515–523.

    PubMed  CAS  Google Scholar 

  • Navankasattusas, S., Zhu, H., Garcia, A.V., Evans, S.M., and Chien, K.R. (1992). A ubiquitous factor (HF-1a) and a distinct muscle factor (HF-lb/MEF2) form an E-boxindependent pathway for cardiac muscle gene expression. Mol Cell Biol 12:1469–1479.

    PubMed  CAS  Google Scholar 

  • O’Brien, T.X., Lee, K.J., and Chien, K.R. (1993). Positional specification of ventricular myosin left chain-2 expression in the primitive murine heart tube. Proc Natl Acad Sci USA 90:5157–5161.

    Article  PubMed  Google Scholar 

  • Olson, E.N. (1990). The MyoD family, a paradigm for development? Genes Dev 4:1451–1461.

    Article  Google Scholar 

  • Olson, E.N., Perry, M., and Schulz, R.A. (1995). Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol 172:2–14.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E.N., and Srivastava, D. (1996). Molecular pathways controlling heart development. Science 272:671–676.

    Article  PubMed  CAS  Google Scholar 

  • Ong, L.-L., Kim, N., Mima, T., Cohen-Gould, L., and Milkawa, T. (1998). Trabecular myocytes of the embryonic heart require N-cadherin for migratory unit identity. Dev Biol 193:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Orsulic, S., and Peifer, M. (1996). An in vivo structure-function study of Armadillo, the Ăźcatenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. J Cell Biol 134:1283–1300.

    Article  PubMed  CAS  Google Scholar 

  • Park, M., Wu, X., Golden, K., Axelrod, J.D., and Bodmer, R. (1996). The wingless signaling pathway is directly involved in Drosophila heart development. Dev Biol 177:104–116.

    Article  PubMed  CAS  Google Scholar 

  • Parmacek, M.S., Vora, A.J., Shen, T., Barr, E., Jung, F., and Leiden, J.M. (1992). Identification and characterization of a cardiac-specific transcriptional regulatory element in the slow/cardiac troponin C gene. Mol Cell Biol 12:1967–1976.

    PubMed  CAS  Google Scholar 

  • Radice, G.L., Rayburn, H., Matsunami, H., Knundsen, K.A., Takeichi, M., and Hynes, R.O. (1997). Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181:64–78.

    Article  PubMed  CAS  Google Scholar 

  • Ramsdell, A., and Markwald, R. (1997). Induction of endocardial cushion tissue in the avian heart is regulated in part, by TGF133-mediated autocrine signaling. Dev Biol 188:64–74.

    Article  PubMed  CAS  Google Scholar 

  • Ranganayakula, G., Zhao, B., Dokidis, A., Molkentin, J.D., Olson, E.N., and Schulz, R.A. (1995). A series of mutations in the d-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila. Dev Biol 171:169–181.

    Google Scholar 

  • Ranger, A.M., Grusby, M.J., Hodge, M.R., et al. (1998). The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392:186–190.

    Article  PubMed  CAS  Google Scholar 

  • Ranscht, B. (1994). Cadherins and catenins: interactions and functions in embryonic development. Curr Opin Cell Biol 6:740–746.

    Article  PubMed  CAS  Google Scholar 

  • Reecy, J.M., Li, X., Yamada, M., et al. (1999). Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2–5. Development 126:839–849.

    PubMed  CAS  Google Scholar 

  • Riley, P., Anson-Cartwright, L., and Cross, J.C. (1998). The Hand 1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nature Genet 18:271–275.

    Article  PubMed  CAS  Google Scholar 

  • Rindt, H., Knotts, S., and Robbins, J. (1995). Segregation of cardiac and skeletal muscle-specific regulatory elements of the (3-myosin heavy chain gene. Proc Natl Acad Sci USA 92:1540–1544.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, E.J. (1997). Left-right asymmetry. Science 275:1280.

    Article  PubMed  CAS  Google Scholar 

  • Rosenquist, T.H., Fray-Gavalas, C., Waldo, K., and Beall, A.C. (1990). Development of the musculoelastic septation complex in the avian truncus arteriosus. Am JAnat 189:339–356.

    Article  CAS  Google Scholar 

  • Rosoff, M.L., and Nathanson, N.M. (1998). GATA factor-dependent regulation of cardiac m2 muscarinic acetylcholine gene transcription. J Biol Chem 273:9124–9129.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R., Navankasattasas, S., Harvey, R., and Chien, K. (1996). An HF-la/HF-1b/MEF2 combinatorial element confers cardiac ventricular specificity and establishes an anterior posterior gradient of expression. Development 122:1799–1809.

    PubMed  CAS  Google Scholar 

  • Runyan, R.B., and Markwald, R.R. (1983). Invasion of mesenchyme into three-dimensional gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev Biol 95:108–114.

    Article  PubMed  CAS  Google Scholar 

  • Runyan, R.B., Potts, J.D., and Weeks, D.L. (1992). TGF(33 mediated tissue interaction during embryonic heart development. Mol Reprod Dev 32:152–159.

    Article  PubMed  CAS  Google Scholar 

  • Sartorell, V.K., Webster, K.A., and Kedes, L. (1990). Muscle-specific expression for the cardiac a-actin gene requires MyoD, CArG-box binding factor and Spl. Genes Dev 4:1811–1822.

    Article  Google Scholar 

  • Sassoon, D.A. (1992). Myogenic regulatory factors: dissection of their role and regulation during vertebrate embryogenesis. Dev Biol 156:11–23.

    Article  Google Scholar 

  • Schott, J., Benson, D.W., Basson, C.T., et al. (1998). Congenital heart disease caused by mutations in the transcription factor Nkx2.5. Science 281:108–111.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss, T.M., Burch, J.B.E., and Lassar, A.B. (1997). A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11:451–462.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss, T.M., Xydas, S., and Lassar, A.B. (1995). Induction of avian cardiac myogenesis by anterior endoderm. Development 121:4203–4214.

    PubMed  CAS  Google Scholar 

  • Sepulveda, J.L., Belaguli, N., Nigam, V., Chen, C.-Y., Nemer, M., and Schwartz, R.J. (1998). GATA-4 and Nkx2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol 18:3405–3415.

    PubMed  CAS  Google Scholar 

  • Shield, M.A., Haugen, H.S., Clegg, C.H., and Hauschka, S.D. (1996). E-Box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice. Mol Cell Biol 16:5058–5068.

    PubMed  CAS  Google Scholar 

  • Srivastava, D., Cserjesai, P., and Olson, E.N. (1995). A subclass of bHLH proteins required for cardiac morphogenesis. Science 270:1995–1999.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, D., and Olson, E.N. (1997). The bHLH proteins dHAND and eHAND in cardiac development. In: Olson, E.N., Harvey, R.P., Schulz R.A., and Altman, J.S., eds. Genetic Control of Heart Development. Human Frontier Science Program, Strasbourg, pp. 62–68.

    Google Scholar 

  • Srivastava, D., Thomas, T., Lin, Q., Kirby, M.L., Brown, D., and Olson, E.N. (1997). Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genet 16:154–160.

    Article  PubMed  CAS  Google Scholar 

  • Staehling-Hampton, K., Hoffmann, F.M., Baylies, M.K., Rushton, E., and Bate, M. (1994). dpp induces mesodermal gene expression in Drosophila. Nature 372:783–786.

    PubMed  CAS  Google Scholar 

  • Sugi, Y., and Lough, J. (1994). Anterior endoderm is a specific effector of terminal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 200:155–162.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, E.C., Tufts, R.L., Polk, C.E., and Leiden, J.M. (1999). Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl Acad Sci USA 96:956–961.

    Article  PubMed  CAS  Google Scholar 

  • Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7:619–627.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M., Chen, Z., Bartunkova, S., Yamasaki, N., and Izumo, S. (1999). The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126:1269–1280.

    PubMed  CAS  Google Scholar 

  • Tevosian, S.G., Deconinck, A.E., Cantor, A.B., et al. (1999). FOG-2: a novel GATA-family cofactor related to multitype zinc-finger proteins friend of GATA-1 and U-shaped. Proc Natl Acad Sci USA 96:950–955.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, W.R., Nadal-Ginard, B., and Maklavi, V. (1991). A MyoD1-independent muscle-specific enhancer controls the expression of the f3-myosin heavy chain gene in skeletal and cardiac muscle cells. J Biol Chem 266:22678–22688.

    PubMed  CAS  Google Scholar 

  • Viragh, S.Z., Szabo, E., and Challice, C.E.C. (1989). Formation of the primitive myo-and endocardial tubes in the chicken embryo. J Mol Cell Cardiol 21:123–137.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D.-Z., Hu, X., Lin, J.L.-C., Kitten, G.T., Solursh, M., and Lin, J.J.-C. (1996). Differential display of mRNAs from the atrioventricular region of developing chicken hearts at stages 15 and 21. Front Biosci 1:a1–15. (http://www.bioscience.org)

    PubMed  CAS  Google Scholar 

  • Wang, D.-Z., Reiter, R.S., Lin, J.L.-C., et al. (1999). Requirement of a novel gene, Xin, in cardiac morphogenesis. Development 126:1281–1294.

    PubMed  CAS  Google Scholar 

  • Wang, G., Yeh, H.-I., and Lin, J.J.-C. (1994). Characterization of cis-regulating elements and transactivating factors of the rat cardiac troponin T gene. J Biol Chem 269:30595–30603.

    PubMed  CAS  Google Scholar 

  • Wang, Q., Sigmund, C.D., and Lin, J.J.-C. (2000). Identification of cis-elements in the cardiac troponin T gene conferring specific expression in cardiac muscle of transgenic mice. Circ Res 86:478–484.

    Article  PubMed  CAS  Google Scholar 

  • Webb, S., Brown, N.A., and Anderson, R.H. (1998). Formation of the atrioventricular septal strctures in the normal mouse. Circ Res 82:645–656.

    CAS  Google Scholar 

  • Weintraub, H., Davis, R., Tapscott, S., et al. (1991). The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766.

    Article  PubMed  CAS  Google Scholar 

  • Wright, W.E. (1992). Muscle basic helix-loop-helix proteins and the regulation of myogenesis. Curr Opin Genet Dev 2:243–248.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., Yin, Z., Hudson, J.B., Ferguson, E.L., and Frasch, M. (1998). Smad protein act in combination with synergistic and anatagonistic regulators to target Dpp responses to the Drosophila mesoderm. Genes Dev 12:2354–2370.

    Article  PubMed  CAS  Google Scholar 

  • Yamamura, H., Zhang, M., Markwald, R.R., and Mjaatvedt, C.H. (1997). A heart segmental defect in the anterior-posterior axis of a transgenic mutant mouse. Dev Biol 186:58–72.

    Article  PubMed  CAS  Google Scholar 

  • Yu, H., Chen, J.K., Feng, S., Dalgargo, D.C., Brauer, A.W., and Schteiber, S.L. (1994). Struc-tural basis for the binding of proline-rich peptides to SH3 domains. Cell 76:933–945.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y.-T., Breitbart, R.E., Smoot, L.B., Lee, Y, Mandavi, V., and Nadal-Ginard, B. (1992). Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dey 6:1783–1798.

    Article  CAS  Google Scholar 

  • Yutzey, K.E., Rhee, J.T., and Bader, D. (1994). Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior pathway in the developing chicken heart. Development 120:871–883.

    PubMed  CAS  Google Scholar 

  • Zhou, M.-D., Goswami, S.K., Martin, M.E., and Siddiqui, M.A.Q. (1993). A new serum responsive, cardiac tissue-specific transcription factor that recognizes the MEF2 site in the myosin light chain-2 promoter. Mol Cell Biol 13:1222–1231.

    PubMed  CAS  Google Scholar 

  • Zhu, H., Nguyen, V.T.B., Brown, A.B., et al. (1993). A novel, tissue-restricted zinc finger protein (HF-1b) binds to the cardiac regulatory element (HF1b/MEF-2) within the rat myosin light chain-2 gene. Mol Cell Biol 13:4432–4444.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, J.JC., Wang, DZ., Reiter, R.S., Wang, Q., Lin, J.J.C., Williams, H.S. (2001). Differentially Expressed Genes and Cardiac Morphogenesis. In: Tomanek, R.J., Runyan, R.B. (eds) Formation of the Heart and Its Regulation. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0207-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0207-3_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6662-4

  • Online ISBN: 978-1-4612-0207-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics