Skip to main content

Function and Biomechanics of Developing Cardiovascular Systems

  • Chapter
Formation of the Heart and Its Regulation

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

Clinicians and scientists have searched for the mechanisms underlying normal and altered cardiovascular (CV) development for millennia. Scientific discovery regarding the CV system has occurred coincident with major advances in our understanding of CV anatomy, embryology, physiology, biomechanics, and, most recently, cellular and molecular biology. These investigations have occurred in a wide range of invertebrate and vertebrate species, representing the diverse adaptation of the CV system to environmental and life-cycle demands (Keller, 1997). The primary experimental model for the investigation of cardiac morphogenesis has been the chick embryo. Despite the small size of the embryonic chick heart, numerous investigators have developed experimental methods to accurately measure blood pressure, blood flow, chamber size, and altered cardiac function or form (Clark and Hu, 1982; Nakazawa et al, 1988; Keller, 1995). These investigations have described individual parameters and integrated measures of embryonic CV function comparable to the analysis of the mature heart (Table 13.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artman, M. (1992). Sarcolemmal Na+-Ca2+ exchange activity and exchanger immunoreactivity in developing rabbit hearts. Am J Physiol 263:H1506–H1513.

    PubMed  CAS  Google Scholar 

  • Benson, D.W. Jr., Hughes, S.F., Hu, N., and Clark, E.B. (1989). Effect of heart rate increase on dorsal aortic flow before and after volume loading in the stage 24 chick embryo. Pediatr Res 26:245–249.

    Article  Google Scholar 

  • Boppart, S.A., Tearney, G.J., Bouma, B.E., Southern, J.F., Brezinski, M.E., and Fujimoto, J.G. (1997). Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography. Proc Natl Acad Sci USA 94:4256–4261.

    Article  PubMed  CAS  Google Scholar 

  • Bowers, P.N., Tinney, J.P., and Keller, B.B. (1996). Nitroprusside selectively reduces ventricular preload in the stage 21 chick embryo. Cardiovasc Res 31:E132–E138.

    PubMed  CAS  Google Scholar 

  • Braunstein, J.B., Donovan, M., Hughes, S., and Benson, D.W. Jr. (1994). Assessment of ventricular relaxation in the developing chick embryo using a monoexponential model. Am J Physiol 267:H631–H635.

    PubMed  CAS  Google Scholar 

  • Burggren, W.W., and Fritsche, R. (1997). Amphibian cardiovascular development. In: Burggren, W., and Keller, B.B., eds. Development of Cardiovascular Systems: Molecules to Organisms. Cambridge University Press, New York, pp. 166–183.

    Google Scholar 

  • Burggren, W.W., and Pinder, A.W. (1991). Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annu Rev Physiol 53:107–135.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, K.A., Hu, N., Clark, E.B., and Keller, B.B. (1992). Analysis of dynamic atrial dimension and function during early cardiac development in the chick embryo. Pediatr Res 32:333–337.

    Article  PubMed  CAS  Google Scholar 

  • Casillas, C.B., Tinney, J.P., and Keller, B.B. (1994). Influence of acute alterations in cycle length on ventricular function in the chick embryo. Am J Physiol 267:H905–911.

    PubMed  CAS  Google Scholar 

  • Cheanvechai, V., Hughes, S.F., and Benson, D.W. Jr. (1992). Relationship between cardiac cycle length and ventricular relaxation rate in the chick embryo. Pediatr Res 31:480482.

    Google Scholar 

  • Chin, T.K., Friedman, W.F., and Klitzner, T.S. (1990). Developmental changes in cardiac myocyte calcium regulation. Circ Res 67:574–579.

    Article  PubMed  CAS  Google Scholar 

  • Chuck, E.T., Freeman, D.M., Watanabe, M., and Rosenbaum, D.S. (1997). Changing activation sequence in the embryonic chick heart: implications for the development of the His-Purkinje system. Circ Res 81:470–476.

    Article  PubMed  CAS  Google Scholar 

  • Clark, E.B., and Hu, N. (1982). Developmental hemodynamic changes in the chick embryo from stages 18 to 27. Circ Res 51:810–815.

    Article  PubMed  CAS  Google Scholar 

  • Clark, E.B., Hu, N., Frommelt, P., Vandekieft, J.L., Dummett, J.L., and Tomanek, R.J. (1989). Effect of increased ventricular pressure on heart growth in chick embryo. Am J Physiol 257:H55–H61.

    PubMed  CAS  Google Scholar 

  • Clark, E.B. (1990). Hemodynamic control of the embryonic circulation. In: Clark, E.B., and Takao, A., eds. Developmental Cardiology: Morphogenesis and Function. Futura, Mount Kisco, NY, pp. 291–304.

    Google Scholar 

  • Clark, E.B., Hu, N., Turner, D.R., Litter, J.E., and Hansen, J. (1991). Effect of chronic verapamil treatment on the ventricular function and growth in chick embryos. Am J Physiol 261:H166–171.

    PubMed  CAS  Google Scholar 

  • Colon, S.D., Parness, I.P., Spevak, P.J., and Saunders, S.P. (1992). Developmental modulation of myocardial mechanics: age-and growth-related alterations in afterload and contractility. J Am Coll Cardiol 19:619–629.

    Article  Google Scholar 

  • Conway, S.J., Godt, R.E., Hatcher, C.J., et al. (1997). Neural crest is involved in development of abnormal myocardial function. J Mol Cell Cardiol 29:2675–2685.

    Article  PubMed  CAS  Google Scholar 

  • Cuneo, B., Hughes, S., and Benson, D.W. Jr. (1991). Heart rate perturbation in the chickembryo: a comparison of two methods. Am J Physiol 260:H1864–1869.

    Google Scholar 

  • Davies, M.P., An, R.H., Doevendans, P., Kubalak, S., Chien, K.R., and Kass, R.S. (1996). Developmental changes in ionic channel activity in the embryonic murine heart. Circ Res 78:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Dunnigan, A., Hu, N., Benson, D.W. Jr., and Clark, E.B. (1987). Effect of heart rate increase on dorsal aortic flow in the stage 24 chick embryo. Pediatr Res 22:442–444.

    Article  PubMed  CAS  Google Scholar 

  • Dyson, E., Sucov, H.M., Kubalak, S.W., et al. (1995). Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor I -/- mice. Proc Natl Acad Sei USA 92:7386–7390.

    Article  CAS  Google Scholar 

  • Emery, J.L., and Omens, J.H. (1997). Mechanical regulation of myocardial growth during volume-overload hypertrophy in the rat. Am J Physiol 273:H1198–1204.

    PubMed  CAS  Google Scholar 

  • Faber, J.J., Green, T.J., and Thornburg, K.L. (1974). Embryonic stroke volume and cardiac output in the chick. Dev Biol 41:14–21.

    Article  PubMed  CAS  Google Scholar 

  • Fritsche, R., and Burggren, W.W. (1996). Development of cardiovascular responses to hypoxia in larvae of the frog Xenopus laevis. Am J Physiol 271:R912–917.

    CAS  Google Scholar 

  • Fung, Y.C. (1997). Biodynamics: Circulation. Springer-Verlag, New York.

    Google Scholar 

  • Furukawa, S., MacLennan, M.J., and Keller, B.B. (1998). Hemodynamic response to anesthesia in pregnant and nonpregnant ICR mice. Lab Anim Sci 48:357–363.

    PubMed  CAS  Google Scholar 

  • Gaasch, W.H., Zile, R.M., Blaustein, A.S., and Bing, O.H.L. (1987). Loading conditions and left ventricular relaxation. In: Grossman, W., and Lorell, B.H., eds. Diastolic Relaxation of the Heart. Martinus Nijhoff, New York, pp. 133–142.

    Chapter  Google Scholar 

  • Godt, R.E., Fogaca, R.T.H., and Nosek, T.M. (1991). Changes in force and calcium sensi-tivity in the developing avian heart.Can J Physiol Pharmacol 69:1692–1697.

    Article  PubMed  CAS  Google Scholar 

  • Gui, Y.H., Linask, K.K., Khowsathit, P., and Huhta, J.C. (1996). Doppler echocardiography of normal and abnormal embryonic mouse heart. Pediatr Res 40:633–642.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V., and Hamilton, H.L. (1951). A series of normal stages in the developmentof the chick embryo.J Morphol 88:49–92.

    Article  Google Scholar 

  • Harh, J.Y., Paul, M.H., Gallen, W.J., Friedberg, D.Z., and Kaplan, S. (1973). Experimental production of hypoplastic left heart syndrome in the chick embryo. Am J Cardiol 31:51–56.

    Article  PubMed  CAS  Google Scholar 

  • Hay, D.A., and Low, F.N. (1970). The fusion of dorsal and ventral endocardial cushions inthe embryonic chick heart: a study in fine structure. Am J Anat 133:1–24.

    Article  Google Scholar 

  • Hirakow, R. (1980). Quantitative studies on the ultrastructural differentiation and growthof mammalian cardiac muscle cells. Acta Anat (Basel) 108:114–152.

    Google Scholar 

  • Hofman, P.L., Hiatt, K., Yoder, M.C., and Rivkees, S.A. (1997). Al adenosine receptors potently regulate heart rate in mammalian embryos. Am J Physiol 273:R1374–1380.

    PubMed  CAS  Google Scholar 

  • Hogers, B., DeRuiter, M.C., Baasten, A.M.J., Gittenberger-de Groot, A.C., and Poelmann, R.E. (1995). Intracardiac blood flow patterns related to the yolk sac circulation of the chick embryo. Circ Res 76:871–877.

    Article  PubMed  CAS  Google Scholar 

  • Hogers, B., DeRuiter, M.C., Gittenberger-de Groot, A.C., and Poelmann, R.E. (1997). Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 80:473–481.

    Article  PubMed  CAS  Google Scholar 

  • Hu, N., and Clark, E.B. (1989). Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res 65:1665–1670.

    Article  PubMed  CAS  Google Scholar 

  • Hu, N., Connuck, D.M., Keller, B.B., and Clark, E.B. (1991). Diastolic filling characteris-tics in the stage 12 to 27 chick embryo ventricle. Pediatr Res 29(4):334–337.

    Article  PubMed  CAS  Google Scholar 

  • Hu, N., Hansen, A.L., Clark, E.B., and Keller, B.B. (1995a). Atrial natriuretic peptidereduces diastolic filling in the stage 21 chick embryo. Pediatr Res 37:465–468.

    Article  CAS  Google Scholar 

  • Hu, N., and Keller, B.B. (1995b). Relationship of simultaneous atrial and ventricular pres-sures in the stage 16 to 27 chick embryo. Am J Physiol 269:H1359–H1362.

    Google Scholar 

  • Icardo, J.M. (1989). Endocardial cell arrangement: role of hemodynamics. Anat Rec 225:150–155.

    Article  PubMed  CAS  Google Scholar 

  • Josephson, I.R., and Sperelakis, N. (1990). Developmental increases in the inwardly-rectifying K+ current of embryonic chick ventricular myocytes. Biochem Biophys Acta 1052:123–127.

    Article  PubMed  CAS  Google Scholar 

  • Kamino, K., Hirota, A., and Fujii, S. (1981). Localization of pacemaking activity in early embryo heart monitored using voltage-sensitive dye. Nature 260:595–597.

    Article  Google Scholar 

  • Kass, D.A., Beyar, R., Lankford, E., Heard, M., Maughan, W.L., and Sagawa K. (1989). Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation 79:167–178.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, M.H. (1992). The Atlas of Mouse Development. Academic Press, New York.

    Google Scholar 

  • Keller, B.B. (1995). Functional maturation and coupling of the embryonic cardiovascularsystem. In: Clark, E.B., Markwald, R.R., and Takao, A., eds. Developmental Mechanisms Futura, Mount Kisco, NY, pp. 367–386.

    Google Scholar 

  • Keller, B.B. (1997). Embryonic cardiovascular function, coupling, and maturation: a species view. In: Burggren, W., and Keller, B.B., eds. Development of Cardiovascular Systems: Molecules to Organisms. Cambridge University, Press, New York, pp. 65–87.

    Google Scholar 

  • Keller, B.B. (1998). Methods to detect cardiovascular phenotypic changes during development. In: Hoit, B.D., and Walsh, R.A., eds. Cardiovascular Physiology in the Genetically Engineered Mouse. Kluwer Academic, New York, pp. 260–275.

    Google Scholar 

  • Keller, B.B., Hu, N., and Clark, E.B. (1990). Correlation of ventricular area, perimeter, and conotruncal diameter with mass and function in the stage 12 to 24 chick embryo. Circ Res 66:109–114.

    Article  PubMed  CAS  Google Scholar 

  • Keller, B.B., Hu, N., Serrino, P.J., and Clark, E.B. (1991). Ventricular pressure-area loop characteristics in the stage 16 to 24 chick embryo. Circ Res 68:226–231.

    Article  PubMed  CAS  Google Scholar 

  • Keller, B.B., Hu, N., and Tinney, J.P. (1994). Embryonic ventricular diastolic and systolic pressure-volume relation. Cardiology in the Young 4:19–27.

    Article  Google Scholar 

  • Keller, B.B., MacLennan, M.J., Tinney, J.P., and Yoshigi, M. (1996). In vivo assessment of embryonic cardiovascular dimensions and function in day 10.5 to 14.5 mouse embryos. Circ Res 79:247–255.

    Article  PubMed  CAS  Google Scholar 

  • Keller, B.B., Yoshigi, M., and Tinney, J.P. (1997). Ventricular-vascular uncoupling by acute conotruncal occlusion in the stage 21 chick embryo. Am J Physiol 273:H2861–H2866.

    PubMed  CAS  Google Scholar 

  • Kirby, M.L., and Waldo, K.L. (1990). Role of neural crest in congenital heart disease. Circulation 82:332–340.

    Article  PubMed  CAS  Google Scholar 

  • Leatherbury, L., Connuck, D.M., and Kirby, M.L. (1993). Neural crest ablation versus sham surgical effects in a chick embryo model of defective cardiovascular development. Pediatr Res 33:628–631.

    Article  PubMed  CAS  Google Scholar 

  • MacLennan, M.J., and Keller, B.B. (1999). Umbilical arterial blood flow in the mouse embryo during development and following acutely increased heart rate. Ultrasound Med Biol 25(3):361–370.

    Article  PubMed  CAS  Google Scholar 

  • Maughan, W.L., Sunagawa, K., Burkhoff, D., and Sagawa, K. (1985). Effect of arterial impedance changes on the end-systolic pressure-volume relation. Circ Res 54:595–602.

    Article  Google Scholar 

  • Meyer-Wittkopf, M., Simpson, J.M., and Sharland, G.K. (1996). Incidence of congenital heart defects in fetuses of diabetic mothers: a retrospective study of 326 cases. Ultrasound Obstet Gynecol 8:8–10.

    Article  PubMed  CAS  Google Scholar 

  • Mikawa, T., and Fischman, D.A. (1996). The polyclonal origin of myocyte lineages. Annu Rev Physiol 58:509–521.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C.E., Vanni, M.A., and Keller, B.B. (1997a). Characterization of passive embryonic myocardium by quasi-linear viscoelasticity theory. J Biomech 30:985–988.

    Article  CAS  Google Scholar 

  • Miller, C.E., Vanni, M.A., Taber, L.A., and Keller, B.B. (1997b). Passive stress-strain measurements in the stage 16 and stage 18 embryonic chick heart. J Biomech Eng 119:445451.

    Google Scholar 

  • Mirsky, I., Tajimi, T., and Peterson, K.L. (1987). The development of the entire end-systolic pressure-volume and ejection fraction-afterload relations: a new concept of systolic myocardial stiffness. Circulation 76:343–356.

    Article  PubMed  CAS  Google Scholar 

  • Moorman, A.F., de Jong, F., Denyn, M.M., and Lamers, W.H. (1998). Development of the cardiac conduction system. Circ Res 82(6):629–644.

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa, M., Clark, E.B., Hu, N., and Wispe, J. (1985). Effect of environmental hypothermia on vitelline artery blood pressure and vascular resistance in the stage 18, 21, and 24 chick embryo. Pediatr Res 19:651–654.

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa, M., Kajio, F., Ikeda, K., and Takao, A. (1990). Effect of atrial natriuretic peptide on hemodynamics of the stage 21 chick embryo. Pediatr Res 27:557–560.

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa, M., Miyagawa, S., Ohno, T., Miura, S., and Takao, A. (1988). Developmental hemodynamic changes in rat embryos at 11 to 15 days of gestation: normal data of blood pressure and the effect of caffeine compared to data from chick embryo. Pediatr Res 23:200–205.

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa, M., Miyagawa, S., Takao, A., Hu, N., and Clark, E.B. (1986). Hemodynamic effects of environmental hyperthermia in the stage 18, 21, and 24 chick embryo. Pediatr Res 20:1213–1215.

    Article  PubMed  CAS  Google Scholar 

  • Paff, G.H., Boucek, R.J., and Klopfenstein, H.S. (1948). Experimental heart-block in the chick embryo. Anat Rec 149:217–224.

    Article  Google Scholar 

  • Patten, B.M., Kramer, T.C., and Barry, A. (1948). Valvular action in the embryonic chick heart by localized apposition of endocardial masses. Anat Rec 102:299–311.

    Article  PubMed  CAS  Google Scholar 

  • Pegram, B.L., Trippodo, N.C., Natsume, T., et al. (1986). Hemodynamic effects of atrialnatriuretic hormone. Fed Proc 45:2382–2386.

    PubMed  CAS  Google Scholar 

  • Pelster, B., and Burggren, W.W. (1996). Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). Circ Res 79:358–362.

    Article  PubMed  CAS  Google Scholar 

  • Pexieder, T. (1986). Standardized method for study of normal and abnormal cardiac development in chick, rat, mouse, dog and human embryos. Teratology 33:91C–92C.

    Google Scholar 

  • Pexieder, T., and Janecek, P. (1984a). Organogenesis of the human embryonic and early fetal heart as studied by microdissection and SEM. In: Nora, J.J., and Takao, A., eds. Congenital Heart Disease: Causes and Processes. Futura, Mt. Kisco, NY, pp. 401–421.

    Google Scholar 

  • Pexieder, T., Christen, Y., Vuillemin, M., and Patterson, D.F. (1984b). Comparative morphometric analysis of cardiac organogenesis in chick, mouse, and dog embryos. In: Nora, J.J., and Takao, A., eds. Congenital Heart Disease: Causes and Processes. Futura, Mt. Kisco, NY, pp. 423–438.

    Google Scholar 

  • Protasi, F., Sun, X.H., and Franzini-Armstrong, C. (1996). Formation and maturation of the calcium release apparatus in developing and adult avian myocardium. Dev Biol 173:265–278.

    Article  PubMed  CAS  Google Scholar 

  • Ranu, H.S. (1998). Bioengineering in the millennium. J Biomater Appl 13:100–110.

    PubMed  CAS  Google Scholar 

  • Rombough, P.J. (1997). Piscine cardiovascular development. In: Burggren, W., and Keller, B.B., eds. Development of Cardiovascular Systems: Molecules to Organisms. Cambridge University Press, New York, pp. 145–165.

    Google Scholar 

  • Rosenquist, T.H., and Modis, L. (1991). Spatial disorder of collagens in the great vessels, associated with congenital heart defects. Anat Rec 229:116–124.

    Article  PubMed  CAS  Google Scholar 

  • Sagawa, K., Maughan, W.L., Suga, H., and Sunagawa, K. (1988). Physiologic determinants of pressure-volume relations. In: Cardiac Contraction and the Pressure-Volume Relationship. Oxford University Press, New York, pp. 110–172.

    Google Scholar 

  • Sedmera, D., Pexieder, T., Hu, N., and Clark, E.B. (1997). Developmental changes in the myocardial architecture of the chick. Anat Rec 248:421–432.

    Article  PubMed  CAS  Google Scholar 

  • Sedmera, D., Pexieder, T., Hu, N., and Clark, E.B. (1998). A quantitative study of the ventricular myoarchitecture in the stage 21–29 chick embryo following decreased loading. Eur J Morphol 36:105–119.

    Article  PubMed  CAS  Google Scholar 

  • Sedmera, D., Pexieder, T., Rychterova, V., Hu, N., and Clark, E.B. (1999). Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 254(2):238–252.

    Article  PubMed  CAS  Google Scholar 

  • Sissman, N.J. (1970). Developmental landmarks in cardiac morphogenesis: comparative chronology. Am J Cardiol 25:141–148.

    Article  PubMed  CAS  Google Scholar 

  • Smith, B.R., Linney, E., Huff, D.S., and Johnson, G.A. (1996). Magnetic resonance microscopy of embryos. Comput Med Imaging Graph 20(6):486–490.

    Article  Google Scholar 

  • Srinivasan, S., Baldwin, H.S., Aristizabal, O., et al. (1998). Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography. Circulation 98:912–918.

    Article  PubMed  CAS  Google Scholar 

  • Stainier, D.Y., Fouquet, B., Chen, J.N., et al. (1996). Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285–292.

    PubMed  CAS  Google Scholar 

  • Sunagawa, K., Sagawa, K., and Maughan, W.L. (1987). Ventricular interaction with the vascular system in terms of pressure-volume relationships. In: Yin, F.C.P., ed. Ventricular Vascular Coupling: Clinical, Physiological, and Engineering Aspects. Springer-Verlag, New York, pp. 210–239.

    Chapter  Google Scholar 

  • Sweeney, L.J. (1981). Morphometric analysis of an experimental model of left heart hypoplasia in the chick. Ph.D. thesis, Omaha, Nebraska, University of Nebraska Medical Center.

    Google Scholar 

  • Taber, L.A. (1998). Mechanical aspects of cardiac development. Prog Biophys Mol Biol 69:237–255.

    Article  PubMed  CAS  Google Scholar 

  • Taber, L.A., Hu, N., Pexieder, T., Clark, E.B., and Keller, B.B. (1993). Residual strain in the embryonic ventricle of the stage 16 to 24 chick embryo heart. Circ Res 72:455462.

    Google Scholar 

  • Taber, L.A., Keller, B.B., and Clark, E.B. (1992). Cardiac mechanics in the stage 16 chick embryo. J Biomech Eng 114:427–434.

    Article  PubMed  CAS  Google Scholar 

  • Taber, L.A., Sun, H., Cartmell, J.S., Clark, E.B., and Keller, B.B. (1994). Epicardial strains in the stage 16–24 embryonic chick ventricle. Circ Res 75:896–903.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, N., Mao, L., Delano, F.A., et al. (1997). Left ventricular volumes and function in the embryonic heart. Am J Physiol 273:H1368–H1376.

    PubMed  CAS  Google Scholar 

  • Terracio, L., and Borg, T.K. (1988). Factors affecting cardiac cell shape. Heart Failure 4:114–124.

    Google Scholar 

  • Theiler, K. (1989). The House Mouse: Development and Normal Stages from Fertilization to 4 Weeks of Age, 2nd ed. Springer-Verlag, Berlin.

    Google Scholar 

  • Thornburg, K.L., Giraud, G.D., Reller, M.D., and Morton M.J. (1997). Mammalian cardiovascular development: physiology and functional reserve of the fetal heart. In: Burggren, W.W., and Keller, B.B., eds. Development of Cardiovascular Systems: Molecules to Organisms. Cambridge University Press, Cambridge, UK, pp. 211–226.

    Google Scholar 

  • Tobita, K., and Keller, B.B. (1999). End-systolic myocardial stiffness is a load independent index of contractility in the stage 24 chick embryonic heart. Am J Physiol 276: H2102–H2108.

    PubMed  CAS  Google Scholar 

  • Tobita, K., and Keller, B.B. (2000a). Maturation of end-systolic stress-strain relations in chick embryonic myocardi. Am J Physiol Heart Circ Physiol 279(1):H216–224.

    CAS  Google Scholar 

  • Tobita, K., and Keller, B.B. (2006). Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am J Physiol Heart Circ Physiol. 279(3):H959–H969.

    Google Scholar 

  • Tsyvian, P., Malkin, K., Artemieva, O., and Wladimiroff, J.W. (1998). Assessment of left ventricular filling in normally grown fetuses, growth-restricted fetuses and fetuses of diabetic mothers. Ultrasound Obstet Gynecol 12:33–38.

    Article  PubMed  CAS  Google Scholar 

  • Ursem, N.T.C., Brinkman, H.J.F., Struijk, P.C., et al. (1998). Umbilical artery waveform analysis based on maximum, mean, and mode velocity in early human pregnancy. Ultrasound Med Biol 24:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Vetter, R., and Will, H. (1986). Sarcolemmal Na-Ca exchange and sarcoplasmic reticulum calcium uptake in developing chick heart. J Mol Cell Cardiol 18:1267–1275.

    Article  PubMed  CAS  Google Scholar 

  • Vuillemin, M., and Pexieder, T. (1989a). Normal stages of cardiac organogenesis in the mouse, I: development of the external shape of the heart. Am J Anat 184:101–113.

    Article  CAS  Google Scholar 

  • Vuillemin, M., and Pexieder, T. (1989b). Normal stages of cardiac organogenesis in the mouse, II: development of the internal relief of the heart. Am J Anat 184:114–128.

    Article  CAS  Google Scholar 

  • Weiss, J.L., Frederiksen, J.W., and Weisfeldt, M.L. (1976). Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 58:751–760.

    Article  PubMed  CAS  Google Scholar 

  • Wladimiroff, J.W., Huisman, T.W.A., Stewart, P.A., and Stijnen, T. (1992). Normal fetal Doppler inferior vena cava, trans tricuspid and umbilical artery flow velocity waveforms between 11 and 16 weeks of gestation. Am J Obstet Gynecol 3:921–924.

    Google Scholar 

  • Ya, J., Schilham, M.W., de Boer, P.A., Moorman, A.F., Clevers, H., and Lamers, W.H. (1998). Sox4-deficiency syndrome in mice is an animal model for common trunk. Circ Res 83:986–994.

    Article  PubMed  CAS  Google Scholar 

  • Yang, M., Taber, L.A., and Clark, E.B. (1994). A nonlinear poroelastic model for the trabecular embryonic heart. J Biomecb Eng 116:213–223.

    Article  CAS  Google Scholar 

  • Yasui, H., Nakazawa, M., Morishima, M., Miyagawa-Tomita, S., and Momma, K. (1995). Morphological observations on the pathogenetic process of transposition of the great arteries induced by retinoic acid in mice. Circulation 91:2478–2486.

    Article  PubMed  CAS  Google Scholar 

  • Yoshigi, M., and Keller, B.B. (1997a). Characterization of the embryonic aortic impedance with lumped parameter models. Am J Pbysiol 273:H19-H27.

    Google Scholar 

  • Yoshigi, M., Ettel, J.M., and Keller, B.B. (1997b). Developmental changes in flow wave propagation velocity in the embryonic chick vascular system. Am J Physiol273:H1523-H1529.

    Google Scholar 

  • Yoshigi, M., Hu, N., and Keller, B.B. (1996). Dorsal aortic impedance in the stage 24 chick embryo following acute changes in circulating blood volume. Am J Pbysiol 270:H1597–1606.

    CAS  Google Scholar 

  • Yoshigi, M., and Keller, B.B. (1996). Linearity of pulsatile pressure-flow relations in the embryonic chick vascular system. Circ Res 79:864–870.

    Article  PubMed  CAS  Google Scholar 

  • Zahka, K.G., Hu, N., Brin, K.P., Yin, F.C.P., and Clark, E.B. (1989). Aortic impedance and hydraulic power in the chick embryo from stages 18 to 29. Circ Res 64:1091–1095.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, F.J., Hughes, S.F., Cuneo, B., and Benson, D.W. Jr. (1991). The effect of cardiac cycle length on ventricular end-diastolic pressure and maximum time derivative of pressure in the stage 24 chick embryo. Pediatr Res 29:338–341.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keller, B.B. (2001). Function and Biomechanics of Developing Cardiovascular Systems. In: Tomanek, R.J., Runyan, R.B. (eds) Formation of the Heart and Its Regulation. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0207-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0207-3_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6662-4

  • Online ISBN: 978-1-4612-0207-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics