Skip to main content

Transforming Growth Factor-β Signal Transduction in the Atrioventricular Canal During Heart Development

  • Chapter
Formation of the Heart and Its Regulation

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

During embryonic development of the heart, one critical component of the process is the formation of the mesenchymal cells of the cardiac cushions. Cells within the cushions arise by an epithelial-mesenchymal cell transformation of the overlying endothelium and provide the progenitors of the valves and septum intermedium. In the last several years, significant progress has been made toward understanding this process at the cellular and molecular level. Particularly, the function and localization of transforming growth factor-β (TGF-β and its receptors during epithelial-mesenchymal cell transformation have been studied. Several TGF-β isoforms are expressed throughout the heart (Akhurst et al, 1990; Potts et al, 1992; Barnett et al, 1994; Boyer et al, 1999b) and have been implicated in activities such as angiogenisis (Battegay, 1995) and myocyte hypertrophy (Schneider and Parker, 1990). However, the only cardiac-specific defects produced by loss of the various TGF-βs in null mice were valvular and septal defects seen in TGF-β2 knockout animals (Sanford et al, 1997). Together, mouse and chicken studies point to critical roles for members of this growth factor family in the normal formation of cardiac valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akhurst, R.J., Lehnert, S., Faissner, A., and Duffie, E. (1990). TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development 108(4):645–656.

    PubMed  CAS  Google Scholar 

  • Alexandrow, M.G., and Moses, H.L. (1995). Transforming growth factor beta and cell cycle regulation. Cancer Res 55:1452–1457.

    PubMed  CAS  Google Scholar 

  • Antonelli-Olridge, A., Saunders, K.B., Smith, S.R., and D’Amore, P.A. (1989). An activated form of transforming growth factor-βis produced by cocultures of endothelial cells and pericytes. Proc Nall Acad Sci USA 86:4544–4548.

    Article  Google Scholar 

  • Barbara, N.P., Wrana, J.L., and Letarte, M. (1999). Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274:584–594.

    Article  PubMed  CAS  Google Scholar 

  • Barnett, J.V., Moustakas, A., Lin, W., et al. (1994). Cloning and developmental expression of the chick type II and type III TGFβreceptors. Dev Dyn 199:12–27.

    Article  PubMed  CAS  Google Scholar 

  • Battegay, E.J. (1995). Angiogenesis: mechanistic insights, neovascular diseases and therapeutic prospects. J Mol Med 73:333–346.

    Article  PubMed  CAS  Google Scholar 

  • Bernanke, D.H., and Markwald, R.R. (1982). Migratory behavior of cardiac cushion tissue cells in a collagen lattice system. Dev Biol 91:235–245.

    Article  PubMed  CAS  Google Scholar 

  • Bolender, D.L., Seliger, W.G., and Markwald, R.R. (1980). A histochemical analysis of polyanionic compounds found in the extracellular matrix encountered by migrating cephalic neural crest cells. Anat Rec 196:401–412.

    Article  PubMed  CAS  Google Scholar 

  • Bonyadi, M., Rusholme, S.A., Cousins, F.M., et al. (1997). Mapping of a major genetic modifier of embryonic lethality in TGF beta 1 knockout mice. Nat Genet 15:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, A.S., Ayerinskas, I.I., Vincent, E.B., McKinney, L., Weeks, D.L., and Runyan, R.B.(1999a). TGFβ2 and TGFβ3 have separate and sequential activities during epithelial mes-enchymal cell transformation in the embryonic heart. Dev Biol 208:530–545.

    Article  CAS  Google Scholar 

  • Boyer, A.S., Erickson, C.P., and Runyan, R.B. (1999b). Epithelial-mesenchymal transformation in the embryonic heart is mediated through distinct pertussis toxin-sensitive and TGF signal transduction mechanisms. Dev Dyn 214:81–91.

    Article  CAS  Google Scholar 

  • Brown, C.B., Boyer, A.S., Runyan, R.B., and Barnett, J.V. (1996). Antibodies to the type II TGF beta receptor block cell activation and migration during atrioventricular cushion transformation in the heart. Dev Biol 174:248–257.

    Article  PubMed  CAS  Google Scholar 

  • Brown, C.B., Boyer, A.S., Runyan, R.B., and Barnett, J.V. (1999). Requirement of the type III TGFβ receptors for endocardial cell transformation in the heart. Science 283:2080–2082.

    Article  PubMed  CAS  Google Scholar 

  • Burt, D.W. (1992). Evolutionary grouping of the transforming growth factor-I3 super-family. Biochem Biophys Res Commun 184:590–595.

    Article  PubMed  CAS  Google Scholar 

  • Cheifetz, S., Bellon, T., Cales, C., et al. (1992). Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267:19027–19030.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Lebrun, J.J., and Vale, W. (1996). Regulation of transforming growth factor beta-and activin-induced transcription by mammalian Mad proteins. Proc Natl Acad Sci USA 93:12992–12997.

    Article  PubMed  CAS  Google Scholar 

  • Crossin, K.L., and Hoffman, S. (1991). Expression of adhesion molecules during the formation and differentiation of the avian endocardial cushion tissue. Dev Biol 145:277–286.

    Article  PubMed  CAS  Google Scholar 

  • Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., and Gauthier, J.M. (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, M.C., Slager, H.G., Duffie, E., Mummery, C.L., and Akhurst, R.J. (1993). RNA and protein localisations of TFG beta 2 in the early mouse embryo. Development 117:625–639.

    PubMed  CAS  Google Scholar 

  • Elsdale, T., and Bard, J. (1972). Collagen substrata for studies on cell behavior. J Cell Biol 54:626–637.

    Article  PubMed  CAS  Google Scholar 

  • Eppert, K., Scherer, S.W., Ozcelik, H., et al. (1996). MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552.

    Article  PubMed  CAS  Google Scholar 

  • Fananapazir, K., and Kaufman, M.H. (1988). Observations on the development of the aortico-pulmonary spiral septum in the mouse. J Anat 158:157–172.

    PubMed  CAS  Google Scholar 

  • Ghosh, S., and Brauer, P.R. (1996). Latent transforming growth factor-I3 is present in the extracellular matrix of embroyonic hearts in situ. Dev Dyn 205:126–134.

    Article  PubMed  CAS  Google Scholar 

  • Gougos, A., and Letarte, M. (1988a). Biochemical characterization of the 44G4 antigen from the HOON pre-B leukemic cell line. J Immunol 141:1934–1940.

    CAS  Google Scholar 

  • Gougos, A., and Letarte, M. (1988b). Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line. J Immunol 141:1925–1933.

    CAS  Google Scholar 

  • Graff, J.M., Bansal, A., and Melton, D.A. (1996). Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell 85:479–487.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V., and Hamilton, H.L. (1951). A series of normal stages in the development of the chick embryo. J Morphol 88:49–92.

    Article  Google Scholar 

  • Heine, U.I., Munoz, E.F., Flanders, K.C., et al. (1987). Role of transforming growth factor-31 in the development of the mouse embryo. J Cell Biol 105:2861–2876.

    Article  PubMed  CAS  Google Scholar 

  • Hoodless, P.A., Haerry, T., Abdollah, S., et al. (1996). MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85:489–500.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J.X., Potts, J.D., Vincent, E.B., Weeks, D.L., and Runyan, R.B. (1995). Mechanisms of cell transformation in the embryonic heart [review]. Ann NY Acad Sci 752:317–330.

    Article  PubMed  CAS  Google Scholar 

  • Icardo, J.M., and Manasek, F.J. (1992). Cardiogenesis: development mechanisms and embryology. In: Fozzard, H.A., Harber, E., Jennings, R.B., Katz, A.M., and Morgan, H.E., eds. The Heart and Cardiovascular System, 2nd ed. Raven Press, New York, pp. 1563–1586.

    Google Scholar 

  • Imamura, T., Takase, M., Nishihara, A., et al. (1997). Smad6 inhibits signalling by the TGFbeta superfamily. Nature 389:622–626.

    Article  PubMed  CAS  Google Scholar 

  • Ishisaki, A., Yamato, K., Nakao, A., et al. (1998). Smad7 is an activin-inducible inhibitor of activin-induced growth arrest and apoptosis in mouse B cells. J Biol Chem 273:24293–24296.

    Article  PubMed  CAS  Google Scholar 

  • Kitten, G.T., Markwald, R.R., and Bolender, D.L. (1987). Distribution of basement membrane antigens in cryopreserved early embryonic hearts. Anat Rec 217(4):379–390.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar, M., Liu, F., Hata, A., Doody, J., and Massague, J. (1997). The TGF-beta family mediator Smadl is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 11:984–995.

    Article  PubMed  CAS  Google Scholar 

  • Krug, E.L., Mjaatvedt, C.H., and Markwald, R.R. (1987). Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation. Dev Biol 120(2):348–355.

    Article  PubMed  CAS  Google Scholar 

  • Krug, E.L., Runyan, R.B., and Markwald, R.R. (1985). Protein extracts from early embry-onic hearts initiate cardiac endothelial cytodifferentiation. Dev Biol 112(2):414–426.

    Article  PubMed  CAS  Google Scholar 

  • Labbe, E., Silvestri, C., Hoodless, P.A., Wrana, J.L., and Attisano, L. (1998). Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 2:109–120.

    Article  PubMed  CAS  Google Scholar 

  • Lagna, G., Hata, A., Hemmati-Brivanlou, A., and Massague, J. (1996). Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383:832–836.

    Article  PubMed  CAS  Google Scholar 

  • Lakkis, M.M., and Epstein, J.A. (1998). Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart. Development 125:4359–4367.

    PubMed  CAS  Google Scholar 

  • Lebrun, J.J., Takabe, K., Chen, Y., and Vale, W. (1999). Roles of pathway-specific and inhibitory Smads in activin receptor signaling [in process citation]. Mol Endocrinol 13:15–23.

    Article  PubMed  CAS  Google Scholar 

  • Lechleider, R.J., de Caestecker, M.P., Dehejia, A., Polymeropoulos, M.H., and Roberts, A.B. (1996). Serine phosphorylation, chromosomal localization, and transforming growth factor-beta signal transduction by human bsp-1. J Biol Chem 271:17617–17620.

    Article  CAS  Google Scholar 

  • Lehnert, S., and Akhurst, R.J. (1988). Embryonic pattern of TGF beta type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development 104(2):263–273.

    PubMed  CAS  Google Scholar 

  • Liu, F., Hata, A., Baker, J.C., et al. (1996). A human Mad protein acting as a BMP-regulated transcriptional activator [see comments]. Nature 381:620–623.

    Article  PubMed  CAS  Google Scholar 

  • Loeber, C.P., and Runyan, R.B. (1990). A comparison of fibronectin, laminin, and galactosyltransferase adhesion mechanisms during embryonic cardiac mesenchymal cell migration in vitro. Dev Biol 140(2):401–412.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Casillas, F., Payne, H.M., Andres, J.L., and Massagué, J. (1994). Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 124:557–568.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Casillas, F., Wrana, J.L., and Massagué, J. (1993). Betaglycan presents ligand to the TGF beta signaling receptor. Cell 73:1435–1444.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, R.M., Keski-Oja, J., and Moses, H.L. (1988). Proteolytic activation of latent trans-forming growth factor-43 from fibroblast-conditioned medium.J Cell Biol 106:1597–1605.

    Article  Google Scholar 

  • Macias-Silva, M., Hoodless, P.A., Tang, S.J., Buchwald, M., and Wrana, J.L. (1998). Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J Biol Chem 273:25628–25636.

    Article  CAS  Google Scholar 

  • Markwald, R.R., Runyan, R.B., Kitten, G.T., Funderburg, F.M., Bernanke, D.H., and Brauer, P.R. (1984). Use of collagen gel cultures to study heart development: proteoglycan and glycoprotein interactions during formation of endocardial cushion tissue. In: Trelstad, R.L., ed. The Role of Extracelluar Matrix in Development. New York, Alan R. Liss, pp. 323–350.

    Google Scholar 

  • Massague, J. (1998). TGF-beta signal transduction. Annu Rev Biochem 67:753–791. Massagué, J. (1990). The transforming growth factor-3 family. Annu Rev Cell Biol 6:597–641.

    Article  Google Scholar 

  • Massagué, J., Andres, J.L., Attisano, L., et al. (1992). TGF-beta receptors [review]. Mol Reprod Dev 32:99–104.

    Article  PubMed  Google Scholar 

  • McGuire, P.G., and Alexander, S.M. (1992). Urokinase expression during the epithelialmesenchymal transformation of the avian somite. Dev Dyn 194:193–197.

    Article  PubMed  CAS  Google Scholar 

  • McGuire, P.G., and Alexander, S.M. (1993a). Inhibition of urokinase synthesis and cell surface binding alters the motile behavior of embryonic endocardial-derived mesenchymal cells in vitro. Development 118:931–939.

    CAS  Google Scholar 

  • McGuire, P.G., and Alexander, S.M. (1993b). Urokinase production by embryonic endocardial-derived cells: regulation by substrate composition. Dev Biol 155:442–451.

    Article  CAS  Google Scholar 

  • Milian, F.A., Denhez, F., Kondaiah, P., and Akhurst, R.J. (1991). Embryonic gene expression patterns of TGFβ1, β2, and β3 suggest different developmental functions in vivo. Development 111:131–144.

    Google Scholar 

  • Miyazono, K., Hellman, U., Wernstedt, C., and Heldin, C.H. (1988). Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization. J Biol Chem 263:6407–6415.

    PubMed  CAS  Google Scholar 

  • Mjaatvedt, C.H., Lepera, R.C., and Markwald, R.R. (1987). Myocardial specificity for initiating endothelial-mesenchymal cell transition in embryonic chick heart correlates with a particulate distribution of fibronectin. Dev Biol 119:59–67.

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt, C.H., and Markwald, R.R. (1989). Induction of an epithelial-mesenchymal transition by an in vivo adheron-like complex. Dev Biol 136:118–128.

    Article  PubMed  CAS  Google Scholar 

  • Moore, C.S., Mjaatvedt, C.H., and Gearhart, J.D. (1998). Expression and function of activin beta A during mouse cardiac cushion tissue formation. Dev Dyn 212:548–562.

    Article  PubMed  CAS  Google Scholar 

  • Moses, H.L. (1992). TGF-beta regulation of epithelial cell proliferation. Mol Reprod Dev 32:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Moses, H.L., Yang, E.Y., and Pietenpol, J.A. (1990). TGF-beta stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63:245–247.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, Y., Krug, E.L., and Markwald, R.R. (1994). Myocardial regulation of transforming growth factor-13 expression by outflow tract endothelium in the early embryonic chick heart. Dev Biol 165:615–626.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, Y., Miyazono, K., Kato, M., Takase, M., Yamagishi, T., and Nakamura, H. (1997). Extracellular fibrillar structure of latent TGF beta binding protein-1: role in TGF beta-dependent endothelial-mesenchymal transformation during endocardial cushion tissue formation in mouse embryonic heart. J Cell Biol 136:193–204.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, A., Afrakhte, M., Moren, A., et al. (1997a). Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling [see comments]. Nature 389:631–635.

    Article  CAS  Google Scholar 

  • Nakao, A., Imamura, T., Souchelnytskyi, S., et al. (1997b). TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362.

    Article  CAS  Google Scholar 

  • Nakayama, T., Gardner, H., Berg, L.K., and Christian, J.L. (1998). Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis. Genes Cells 3:387–394.

    Article  PubMed  CAS  Google Scholar 

  • Panganiban, G.E., Reuter, R., Scott, M.P., and Hoffmann, F.M. (1990). A Drosophila growth factor homolog, decapentaplegic, regulates homeotic gene expression within and across germ layers during midgut morphogenesis. Development 110:1041–1050.

    PubMed  CAS  Google Scholar 

  • Potts, J.D., Dagle, J.M., Walder, J.A., Weeks, D.L., and Runyan, R.B. (1991). Epithelialmesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to TGFβ3. Proc Natl Acad Sci USA 88(4):1516–1520.

    Article  PubMed  CAS  Google Scholar 

  • Potts, J.D., and Runyan, R.B. (1989). Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor j3. Dev Biol 134(2):392–401.

    Article  PubMed  CAS  Google Scholar 

  • Potts, J.D., Vincent, E.B., Runyan, R.B., and Weeks, D.L. (1992). Sense and antisense beta 3 mRNA levels correlate with cardiac valve induction. Dev Dyn 193(4):340–345.

    Article  PubMed  CAS  Google Scholar 

  • Proetzel, G., Pawlowski, S.A., Wiles, M.V., et al. (1995). Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 11:409–414.

    Article  PubMed  CAS  Google Scholar 

  • Qu, R., Silver, M.M., and Letarte, M. (1998). Distribution of endoglin in early human development reveals high levels on endocardial cushion tissue mesenchyme during valve formation. Cell Tissue Res 292:333–343.

    Article  PubMed  CAS  Google Scholar 

  • Ramsdell, A.F., and Markwald, R.R. (1997). Induction of endocardial cushion tissue in the avian heart is regulated, in part, by TGFβ3-mediated autocrine signaling. Dev Biol 188:64–74.

    Article  PubMed  CAS  Google Scholar 

  • Romano, L.A., and Runyan, R.B. (1999). Slug is a mediator of epithelial-mesenchymal cell transformation in the developing chicken heart. Dev Biol 212:243–254.

    Article  PubMed  CAS  Google Scholar 

  • Rosa, F., Roberts, A., Danielpour, D., Dart, L., Sporn, M.B., and Dawid, I. (1988). Meso-derm induction in amphibians: the role of TGFβ2-like factors. Science 239:783–786.

    Article  PubMed  CAS  Google Scholar 

  • Runyan, R.B., and Markwald, R.R. (1983). Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev Biol 95:108–114.

    Article  PubMed  CAS  Google Scholar 

  • Runyan, R.B., Potts, J.D., and Weeks, D.L. (1992). TGF-β3-mediated tissue interaction during embryonic heart development. Mol Reprod Dev 32:152–159.

    Article  PubMed  CAS  Google Scholar 

  • Runyan, R.B., Potts, J.D., Weeks, D.L., et al. (1990). Tissue interaction and signal transduction in the atrioventricular canal of the embryonic heart. Ann NY Acad Sci 588:442–443.

    Article  Google Scholar 

  • Sanford, L.P., Ormsby, I., Gittenberger-de Groot, A.C., et al. (1997). TGFβ2 knockout mice have multiple development defects that are non overlapping with other TGFβ knockout phenotypes. Development 124:2659–2670.

    PubMed  CAS  Google Scholar 

  • Savage, C., Das, P., Finelli, A.L., et al. (1996). Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci USA 93:790–794.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, M.D., and Parker, T.G. (1990). Cardiac myocytes as targets for the action of peptide growth factors. Circulation 81:1443–1456.

    Article  PubMed  CAS  Google Scholar 

  • Segarini, P.R., and Seyedin, S.M. (1988). The high molecular weight receptor to transforming growth factor-beta contains glycosaminoglycan chains. J Biol Chem 263:8366–8370.

    PubMed  CAS  Google Scholar 

  • Sekelsky, J.J., Newfeld, S.J., Raftery, L.A., Chartoff, E.H., and Gelbart, W.M. (1995). Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139:1347–1358.

    PubMed  CAS  Google Scholar 

  • Shull, M.M., Ormsby, I., Kier, A.B., et al. (1992). Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699.

    Article  PubMed  CAS  Google Scholar 

  • Sun, D., Vanderburg, C.R., Odierna, G.S., and Hay, E.D. (1998). TGFbeta3 promotes transformation of chicken palate medial edge epithelium to mesenchyme in vitro. Development 125:95–105.

    PubMed  CAS  Google Scholar 

  • Taipale, J., Miyazono, K., Heldin, C.H., and Keski-Oja, J. (1994). Latent transforming growth factor-beta 1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein. J Cell Biol 124:171–181.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, A., Matsuzaki, K., Nakano, K., Kan, M., and McKeehan, W.L. (1998). Ligand-dependent and -independent interactions with the transforming growth factor type II and I receptor subunits reside in the aminoterminal portion of the ectodomain of the type III subunit. In Vitro Cell Dev Biol Anim 34:232–238.

    Article  PubMed  CAS  Google Scholar 

  • Theiler, K. (1989). The House Mouse: Atlas of Embryonic Development. Springer-Verlag, New York.

    Google Scholar 

  • Trelstad, R.L., Hayashi, A., Hayashi, K., and Donahoe, P.K. (1982). The epithelialmesenchyme interface of the male rat mullerian duct: loss of basement membrane integrity and ductal regression. Dev Biol 92(1):27–40.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, M., Shima, H., Yonemura, C.Y., Brody, J., Donahoe, P.K., and Cunha, G.R. (1992). Effect of human recombinant mullerian inhibiting substance on isolated epithelial and mesenchymal cells during mullerian duct regression in the rat. Endocrinology 131:1481–1488.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, E.B., Runyan, R.B., and Weeks, D.L. (1998). Production of the transforming growth factor-beta binding protein endoglin is regulated during chick heart development. Dev Dyn 213:237–247.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.F., Lin, H.Y., Ng-Eaton, E., Downward, J., Lodish, H.F., and Weinberg, R.A. (1991). Expression cloning and characterization of the TGF-beta type III receptor. Cell 67:797–805.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, T.K., Suzuki, M., Omori, Y., et al. (1997). Cloning and characterization of a novel member of the human Mad gene family (MADH6). Genomics 42:446–451.

    Article  PubMed  CAS  Google Scholar 

  • Weeks, D.L., and Melton, D.A. (1987). A maternal mRNA localized to the vegetal hemi-sphere in Xenopus eggs codes for a growth factor related to TGF-β. Cell 51:861–867.

    Article  PubMed  CAS  Google Scholar 

  • Wiersdorff, V., Lecuit, T., Cohen, S.M., and Mlodzik, M. (1996). Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development 122:2153–2162.

    PubMed  CAS  Google Scholar 

  • Wrana, J.L., Attisano, L., Carcamo, J., et al. (1992). TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71:1003–1014.

    Article  PubMed  CAS  Google Scholar 

  • Wrana, J.L., Attisano, L., Wieser, R., Ventura, F., and Massagué, J. (1994). Mechanism of activation of the TGF-β receptor. Nature 370:341–347.

    Article  PubMed  CAS  Google Scholar 

  • Wunsch, A.M., Little, C.D., and Markwald, R.R. (1994). Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue. Dev Biol 165:585–601.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, N., Akiyama, S., Katagiri, T., Namiki, M., Kurokawa, T., and Suda, T. (1997). Smadl and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem Biophys Res Commun 18(2):238,574–580.

    Article  CAS  Google Scholar 

  • Yingling, J.M., Das, P., Savage, C., Zhang, M., Padgett, R.W., and Wang, X.F. (1996). Mammalian dwarfins are phosphorylated in response to transforming growth factor beta and are implicated in control of cell growth. Proc Natl Acad Sci USA 93:8940–8944.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Feng, X.H., and Derynck, R. (1998). Smad3 and Smad4 cooperate with c-Jun/ c-Fos to mediate TGF-beta-induced transcription [published erratum appears in Nature 1998;396(6710):491]. Nature 394:909–913.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Feng, X., We, R., and Derynck, R. (1996). Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 383:168–172.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boyer, A.S., Runyan, R.B. (2001). Transforming Growth Factor-β Signal Transduction in the Atrioventricular Canal During Heart Development. In: Tomanek, R.J., Runyan, R.B. (eds) Formation of the Heart and Its Regulation. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0207-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0207-3_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6662-4

  • Online ISBN: 978-1-4612-0207-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics