Microlocal Defect Measures for Systems

  • Nicolas Burq
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 46)


We define the microlocal defect measures for boundary value systems satisfying the strong Lopatinski condition and we apply these notions to the study of the asymptotic propagation of the energy for the solutions of the Lamé system.


Pseudodifferential Operator Principal Symbol Carleman Estimate Critical Direction Uniform Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


On définit des mesures de défaut de compacité pour les systèmes aux limites vérifiant la condition de Lopatinski uniforme au bord et on utilize ces notions pour étudier la propagation de l’énergie pour les solutions du système de Lamé.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Burq and G. Lebeau, Mesures de défaut de compacité, application au système de lamé A paraîtra aux Annales de L’Ecole Normale Supérieure 2001.Google Scholar
  2. [2]
    C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary Siam Journal of Control and Optimization 305 (1992), 1024–1065.MathSciNetCrossRefGoogle Scholar
  3. [3]
    N. Burq, Mesures semi-classiques et mesures de défaut Séminaire Bourbaki, March 1997.Google Scholar
  4. [4]
    N. Denker, On the propagation of the polarization set for systems of real principal type Journal of Functional Analysis 46 (1982), 351–373.MathSciNetCrossRefGoogle Scholar
  5. [5]
    C. Gérard, Propagation de la polarisation pour des problèmes aux limites convexes pour les bicaracteristiques, Commun. Partial Differ. Equations 10 (1985), 1347–1382.zbMATHGoogle Scholar
  6. [6]
    P. Gérard, Microlocal defect measures Communications in Partial Differential Equations 16 (1991), 1761–1794.zbMATHCrossRefGoogle Scholar
  7. [7]
    P. Gérard and E. Leichtnam, Ergodic properties of eigenfunctions for the dirichlet problem Duke Mathematical Journal 71 (1993), 559–607.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    H. Koch and D. Tataru, On the spectrum of hyperbolic semigroups Comm. Partial Differential Equations 20(5–6) (1995), 901–937.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    G..Lebeau, Equation des ondes amorties, In A. Boutet de Monvel and V. Marchenko, editors Algebraic and Geometric Methods in Mathematical Physics Kluwer Academic, The Netherlands, 1996, p. 73–109.Google Scholar
  10. [10]
    G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity Arch. Ration. Mech. Anal. 148(3) (1999), 179–231.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    L. Miller, Propagation d’ondes semi-classiques á travers une interface et mesures 2-microlocales, Ph.D. thesis, Ecole Polytechnique, 1996.Google Scholar
  12. [12]
    L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations Proceedings of the Royal Society Edinburgh 115-A (1990), 193–230.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Nicolas Burq
    • 1
  1. 1.Université de Paris-SudOrsayFrance

Personalised recommendations