Advertisement

Carleman Estimate and Decay Rate of the Local Energy for the Neumann Problem of Elasticity

  • Mourad Bellassoued
Chapter
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 46)

Abstract

The asymptotic behavior of the local energy and the poles of the resolvent (scattering poles) associated to the elasticity operator in the exterior of an arbitrary obstacle with Neumann or Dirichlet boundary conditions are considered. We prove that there exists an exponentially small neighborhood of the real axis free of resonances. Consequently we prove that for regular data, the energy decays at least as fast as the inverse of the logarithm of the time. According to Stephanov—Vodev ([17], [18]), our results are optimal in the case of a Neumann boundary condition, even when the obstacle is a ball of ℝ3.

The fundamental difference between our case and the case of the scalar laplacian (see Burq [1]) is that the phenomenon of Rayleigh waves is connected to the failure of the Lopatinskii condition.

Key words

Carleman estimate resonances energy decay elasticity system 

AMS Subject Classification

35 P20 35 L20 73 CO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    N. Burg, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), 1–29.MathSciNetCrossRefGoogle Scholar
  2. [2]
    L. Hörmander, The Analysis of Linear Partial Differential Operators, I, II, Springer-Verlag, 1985.Google Scholar
  3. [3]
    N. Ikehata and G. Nakamura, Decaying and nondecaying properties of the local energy of an elastic wave outside an obstacle, Japan J. Appl. Math. 8 (1989), 83–95.MathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Iwashita and Y. Shibata, On the analyticity of spectral functions for exterior boundary value problems, Glas. Math. Ser. III 23(43) (1988), 291–313.MathSciNetGoogle Scholar
  5. [5]
    M. Kawashita, On the local-energy decay property for the elastic wave equation with the Neumann boundary conditions, Duke Math. J. 67 (1992), 333–351.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    M. Kawashita, On a region free from the poles of resolvent and decay rate of the local energy for the elastic wave equation, Indiana Univ. Math. J. 43 (1994), 1013–1043.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    V. Kupradze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North Holland, Amsterdam, 1979.Google Scholar
  8. [8]
    P.D. Lax and R.S. Phillips, Scattering Theory, New York, Academic Press, 1967.zbMATHGoogle Scholar
  9. [9]
    G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. Part. Diff. Eq. 20 (1995), 335–356.MathSciNetzbMATHGoogle Scholar
  10. [10]
    G. Lebeau and L. Robbiano, Stabilisation de l’équation des ondes par le bard, Duke Math. J. 86(3) (1997), 465–491.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    R.B. Melrose, Singularities and energy decay in acoustical scattering, Duke Math. J. 46 (1979), 43–59.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    P. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.zbMATHGoogle Scholar
  13. [13]
    R.B. Melrose and J. Sjöstrand, Singularities of boundary value problems I, Comm Pure Appl. Math. 31 (1978), 593–617.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    C.S. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 28 (1975), 229–264.MathSciNetzbMATHGoogle Scholar
  15. [15]
    J.V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22 (1969), 807–823.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Y. Shibata and H. Soga, Scattering theory for the elastic wave equation, Publ. RIMS Kyoto Univ. 25 (1989), 861–887.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    P. Stefanov and G. Vodev, Distribution of the resonances for the Neumann problem in linear elasticity in the exterior of a ball, Ann. Inst. H. Poincaré, Phys. Th. 60 (1994), 303–321.MathSciNetzbMATHGoogle Scholar
  18. [18]
    P. Stefanov and G. Vodev, Distribution of the resonances for the Neumann problem in linear elasticity outside a strictly convex body, Duke Math. J. 78(3) (1995), 677–714.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    P. Stefanov and G. Vodev, Neumann resonances in linear elasticity for an arbitrary body, Comm. in Math. Phy. 176 (1996), 645–659.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl. 9(4), 75 (1996), 367–408.MathSciNetzbMATHGoogle Scholar
  21. [21]
    M. Taylor, Rayleigh waves in linear elasticity as a propagation of singularities phenomenon, in Proceedings of the Conference on Partial Equa. Geo.,Marcel Dekker, New York, 1979, pp. 273–291.Google Scholar
  22. [22]
    M. Taylor, Reflection of singularities of solution to systems of differential equations, Comm. Pure Appl. Math. 29 (1976), 1–38.zbMATHGoogle Scholar
  23. [23]
    H. Walker, Some remarks on the local energy decay of solutions of the initial boundary value problem for the wave equation in unbounded domains, J. Diff. Eqs. 23 (1977), 459–471.zbMATHCrossRefGoogle Scholar
  24. [24]
    K. Yamamoto, Singularities of solutions to the boundary value problems for elastic and Maxwell’s equations, Japan J. Math. 14(1), (1988), 119–163.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Mourad Bellassoued
    • 1
  1. 1.Mathématiques, Bât. 425Université de Paris SudOrsay CedexFrance

Personalised recommendations