Skip to main content

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 46))

Abstract

The aim of this article is the study of stabilization for the wave equation on exterior domains, with Dirichlet boundary condition. More precisely, let O be a bounded, smooth domain of ℝn (n odd); we consider the following wave equation on Ω = c Ō:

$$ \left( E \right)\left\{ \begin{gathered} \square u = \partial _t^2 u = 0 on \mathbb{R} \times \Omega \hfill \\ u\left( 0 \right) = f_1 ,\partial _t u\left( 0 \right) = f_2 on \Omega \hfill \\ u_{\partial \Omega \times \mathbb{R}} = 0 \hfill \\ \end{gathered} \right. $$

with the initial data f = (f 1, f 2) ∈ H(Ω) = H D × L 2, the completion of (C 0 (Ω))2 for the energy norm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control and stabilisation of waves from the boundary, SIAM J. Control Optim. 305 (1992), 1024–1065.

    Article  MathSciNet  Google Scholar 

  2. N. Burg, Decroissance de l’energie locale de l’equation des ondes pour le problemexterieur et absence de resonance au voisinage du reel, Acta Math. 180 (1998) 16–29.

    Google Scholar 

  3. P. Gerard, Microlocal defect measures, Comm. Partial Dif. Equations 16 (1991), 1761–1794.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Gerard, Oscillations and concentrations effects in semi-linear dispersive wave equation, J. Fund. Analysis 41(1) (1996), 60–98.

    Article  MathSciNet  Google Scholar 

  5. P.D. Lax, C.S. Morawetz, and R.S. Philips, Exponential decay of solution of the wave equation in the exterior of a star shaped obstacle, Comm. Pure. Appl. Math. 16 (1963) 477–486.

    Article  MathSciNet  MATH  Google Scholar 

  6. RD. Lax and RS. Phillips, Scattering Theory Decay, Academic Press, New York, 1967.

    Google Scholar 

  7. G. Lebeau, Control for hyperbolic equations, Actes du Colloque de Saint Jean de Monts (1991).

    Google Scholar 

  8. G. Lebeau, Equations des ondes amorties, A. Boutet de Monvel and V. Marchenko (eds), Algebraic and Geometric Methods in Math. Physics,1996, Kluwer Academic Publisher, 73–109.

    Google Scholar 

  9. J.L. Lions, Controlabilite exacte, Perturbation et stabilisation des systemes distribues, R.M.A, Masson, 1988.

    Google Scholar 

  10. R. Melrose and J. Sjöstrand, Singularites of boundary value problems I, Comm. Pure. Appl. Math. 31 (1978), 593–617; II, C.P.A.M 35 (1982), 129–168.

    MATH  Google Scholar 

  11. R. Melrose, Singularities and energy decay in acoustical scattering, Duke Math. J. 46 (1979) 43–59.

    Article  MathSciNet  MATH  Google Scholar 

  12. C.S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure. Appl. Math. 28 (1975), 229–264.

    MathSciNet  MATH  Google Scholar 

  13. C.S. Morawetz, J. Ralston, and W. Strauss, Decay of solutions of the wave equation outside non-trapping obstacles. Comm. Pure. Appl. Math. 30 (1977), 447–508.

    MathSciNet  MATH  Google Scholar 

  14. J. Ralston, Solution of the wave equation with localized energy, Comm. Pure. Appl. Math. 22 (1969), 807–823.

    MathSciNet  MATH  Google Scholar 

  15. J. Rauch and M. Taylor, Exponential decay of solutions for the hyperbolic equation in bouded domain, Indiana University Math. J. 24 (1972), 74–86.

    Google Scholar 

  16. W.A. Strauss, Dispersal of waves vanishing on the boundary of aexterior domain, Comm. Pure. Appl. Math. 28 (1975) 265–278.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aloui, L., Khenissi, M. (2001). Stabilization for the Wave Equation on Exterior Domains. In: Colombini, F., Zuily, C. (eds) Carleman Estimates and Applications to Uniqueness and Control Theory. Progress in Nonlinear Differential Equations and Their Applications, vol 46. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0203-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0203-5_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6660-0

  • Online ISBN: 978-1-4612-0203-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics