Maintaining the Fully Differentiated Cardiac Sarcomere

  • Daniel E. Michele
  • Joseph M. Metzger
Chapter
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)

Abstract

The contractile proteins of the fully differentiated muscle cell are arranged in a highly ordered three-dimensional lattice. The functional interactions among these proteins are optimized to produce force and motion in response to rapid changes in intracellular calcium. In the muscle sarcomere, the structural interactions among different contractile proteins are complex, in some cases forming multimeric complexes (troponin, myosin), micron-long filaments (thick and thin filaments), or multicomponent anchoring networks (Z-line). The de novo formation of the muscle sarcomere (myofibrillogenesis) in a differentiating muscle cell is a very dynamic process, with coordinate regulation of muscle protein isoform gene expression, localization of the newly synthesized protein to the myofibrillar structures, and the organization of these structures into sarcomeres. The process of myofibrillogenesis is well documented in the chapters of this book and has been markedly advanced by recent genetic and immunocytochemistry approaches applied to embryonic, neonatal, and other types of differentiating muscle cells.

Keywords

Polyacrylamide Cardiomyopathy Dodecyl Barb Onic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martin, A.F. 1981. Turnover of cardiac troponin subunits. J. Biol. Chem. 256:964–968.PubMedGoogle Scholar
  2. 2.
    Jacobson, S.L. 1977. Culture of spontaneously contracting myocardial cells from adult rats. Cell Struct. Funct. 2:1–9.CrossRefGoogle Scholar
  3. 3.
    Moses, R.L. and Claycomb, W.C. 1982. Disorganization and reestablishment of cardiac cell ultrastructure in adult rat ventricular muscle cells. J. Ultrastruct. Res. 81:358–374.PubMedCrossRefGoogle Scholar
  4. 4.
    Eppenberger, M.E., Hauser, I., Bächi, T., et al. 1988. Immunocytochemical analysis of the regeneration of myofibrils in long term cultures of adult cardiac myocytes of the rat. Dey. Biol. 130:1–15.CrossRefGoogle Scholar
  5. 5.
    Messerli, J.M., Eppenberger-Eberhardt, M.E., Rutishauser, B.M., et al. 1993. Remodeling of the cardiomyocyte architecture visualized with three-dimensional confocal microscopy. Histochemistry 100:193–202.PubMedCrossRefGoogle Scholar
  6. 6.
    LoRusso, S.M., Rhee, D., Sanger, J.M., and Sanger, J.W. 1997. Premyofibrils in spreading adult cardiac myocytes in tissue culture: Evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. Cell Motil. Cytoskel. 37:183–198.CrossRefGoogle Scholar
  7. 7.
    Rust, E.M., Westfall, M.V., and Metzger, J.M. 1998. Stability of the contractile assembly and Ca“ activated tension in adenovirus infected adult cardiac myocytes. Mol. Cell Biochem. 181:143–155.PubMedCrossRefGoogle Scholar
  8. 8.
    Kirshenbaum, L.A., MacLellen, W.R., Mazur, W., French, B.A., and Schneider, M.D. 1993. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. J. Clin. Invest. 92:381–387.PubMedCrossRefGoogle Scholar
  9. 9.
    Westfall, M.V., Rust, E.M., Albayya, F., and Metzger, J.M. 1997. Adenovirus mediated myofilament gene transfer into adult cardiac myocytes. Methods Cell Biol. 52:307–322.PubMedCrossRefGoogle Scholar
  10. 10.
    Michele, D.E., Albayya, F.P., and Metzger, J.M. 1999. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. J. Cell Biol. 145:1483–1495.PubMedCrossRefGoogle Scholar
  11. 11.
    Michele, D.E., Albayya, F.P., and Metzger, J.M. 1999. Expression of FHC mutant tropomyosins increases the sensitivity of Ca“ activated force production in adult cardiac myocytes. Biophys. J. 76:A274.Google Scholar
  12. 12.
    Rust, E.M., Albayya, F.P., and Metzger, JM. 1999. Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins. J. Clin. Invest. 103:1459–1467.PubMedCrossRefGoogle Scholar
  13. 13.
    Westfall, M.V., Rust, E.M., and Metzger, J.M. 1997. Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function. Proc. Natl. Acad. Sci. USA 94:5444–5449.PubMedCrossRefGoogle Scholar
  14. 14.
    Westfall, M.V., Albayya, F.P., and Metzger, J.M. 1999. Functional analysis of troponin I regulatory domains in the intact myofilament of adult cardiac myocytes. J. Biol. Chem. 274:22508–22516.PubMedCrossRefGoogle Scholar
  15. 15.
    Moss, R.L. 1992. Ca“ regulation of mechanical properties of striated muscle: mechanistic studies using extraction and replacement of regulatory proteins. Circ. Res. 70:865–884.PubMedCrossRefGoogle Scholar
  16. 16.
    James, J. and Robbins, J. 1997. Molecular remodeling of cardiac contractile function. Am. J. Physiol. 273:H2105–H2118.PubMedGoogle Scholar
  17. 17.
    Rethinasamy, P., Muthuchamy, M., Hewett, H., et al. 1998. Molecular and physiological effects of alpha-tropomyosin ablation in the mouse. Circ. Res. 82:116–123.PubMedCrossRefGoogle Scholar
  18. 18.
    Blanchard, E.M., Iizuka, K., Christe, M., et al. 1997. Targeted ablation of the alpha tropomyosin gene. Circ. Res. 81:1005–1010.PubMedCrossRefGoogle Scholar
  19. 19.
    Morris, E.J. and Fulton, A.B. 1994. Rearrangement of mRNAs for costamere proteins during costamere development in cultured skeletal muscle from chicken. J. Cell Sci. 107: 377–386.PubMedGoogle Scholar
  20. 20.
    Fulton, A.B. and Alftine, C. 1997. Organization of protein and mRNA for titin and other myofibril components during myofibrillogenesis in cultured skeletal muscle. Cell Struct. Funct. 22:51–58.PubMedCrossRefGoogle Scholar
  21. 21.
    Russell, B., Wenderoth, M.P., and Goldspink, P.H. 1992. Remodeling of myofibrils: sub-cellular distribution of myosin heavy chain mRNA and protein. Am. J. Physiol. 262: R339–R345.PubMedGoogle Scholar
  22. 22.
    Helfman, D.M., Berthier, C., Grossman, J., et al. 1999. Nonmuscle tropomyosin-4 requires co-expression with other low molecular weight isoforms for binding to the thin filaments in adult cardiac myocytes. J. Cell Sci. 112:371–380.PubMedGoogle Scholar
  23. 23.
    Morkin, E. 1970. Postnatal muscle fiber assembly: localization of newly synthesized myofibrillar proteins. Science 167:1499–1501.PubMedCrossRefGoogle Scholar
  24. 24.
    Lemanski, L.F., Mooseker, M.S., Peachey, L.D., and Iyengar, M.R. 1976. Studies of muscle proteins in embryonic myocardial cells of cardiac lethal mutant Mexican axolotls by use of heavy meromyosin binding and sodium dodecyl sulfate polyacrylamide gel electrophoresis. J. Cell Biol. 68:375–388.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu, H. and Bretscher, A. 1989. Disruption of a single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton. Cell 57:233–242.PubMedCrossRefGoogle Scholar
  26. 26.
    Littlefield, R. and Fowler, V.M. 1998. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu. Rev. Cell Dev. Biol. 14:487–525.PubMedCrossRefGoogle Scholar
  27. 27.
    Gregorio, C.C., Weber, A., Bondad, M., Pennise, C.R., and Fowler, V.M. 1995. Requirement of pointed end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature 377:83–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Sussman, M.A., Baque, S., Uhm, C.S., et al. 1988. Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils. Circ. Res. 82:94–105.CrossRefGoogle Scholar
  29. 29.
    Tobacman, L.S. 1996. Thin filament mediated regulation of cardiac contraction. Annu. Rev. Physiol. 58:447–481.PubMedCrossRefGoogle Scholar
  30. 30.
    Hibberd, M.G. and Jewell, B.R. 1982. Calcium dependent and length dependent force production in rat ventricular muscle. J. Physiol. London 329:527–540.PubMedGoogle Scholar
  31. 31.
    Trombitás, K., Baatsen, P.H.W.W., Lin, J.J.-C., Lemanski, L.F., and Pollack, G.H. 1990. Immunoelectron microscopic observations of tropomyosin localization in striated muscle. J. Muscle Res. Cell Motil. 11:445–452.PubMedCrossRefGoogle Scholar
  32. 32.
    Wenderoth, M.P. and Eisenberg, B.R. 1987. Incorporation of nascent myosin heavy chains into thick filaments of cardiac myocytes in thyroid treated rabbits. J. Cell Biol. 105: 2771–2780.PubMedCrossRefGoogle Scholar
  33. 33.
    Dome, J.S., Mittal, B., Pochapin, M.B., Sanger, J.M., and Sanger, J.W. 1988. Incorporation of fluorescently labeled actin and tropomyosin into muscle cells. Cell Differ. Dev. 23:37–52.Google Scholar
  34. 34.
    Watkins, H., Seidman, J.G., and Seidman, C.E. 1995. Familial hypertrophic cardiomyopathy: a genetic model of cardiac hypertrophy. Hum. Mol. Genetics 4:1721–1727.CrossRefGoogle Scholar
  35. 35.
    Bonne, G., Carrier, L., Richard, P., Hainque, B., and Schwartz, K. 1998. Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ. Res. 83:580–593.PubMedCrossRefGoogle Scholar
  36. 36.
    Mogensen, J., Klausen, I.C., Pedersen, AK., et al. 1999. a-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest. 103:R39–R43.PubMedCrossRefGoogle Scholar
  37. 37.
    Marian, A.J., Zhao, G.L., Seta, Y., Roberts, R., and Yu, Q.T. 1997. Expression of a mutant (Arg92Gln) human cardiac troponin T, known to cause hypertrophic cardiomyopathy, impairs adult cardiac myocyte contractility. Circ. Res. 81:76–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Yang, Q., Sanbe, A., Osinska, H., Hewett, T.E., Klevitsky, R., and Robbins, J. 1998. A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J. Clin. Invest. 102:1292–1300.PubMedCrossRefGoogle Scholar
  39. 39.
    Marian, A.J., Yu, Q.-T., Mann, D.L., Graham, F.L., and Roberts, R. 1995. Expression of a mutation causing hypertrophic cardiomyopathy disrupts sarcomere assembly in adult feline cardiac myocytes. Circ. Res. 77:98–106.PubMedCrossRefGoogle Scholar
  40. 40.
    Becker, K.D., Gottshall, K.R., Hickey, R., Perriard, J.-C., and Chien, K.R. 1997. Point mutations in human β cardiac myosin heavy chain have differential effects on sarcomeric structure and assembly: an ATP binding site change disrupts both thick and thin filaments whereas hypertrophic cardiomyopathy mutations display normal assembly. J. Cell Biol. 137:131–140.PubMedCrossRefGoogle Scholar
  41. 41.
    Fatkin, D., Christe, M.E., Aristizabal, O., et al. 1999. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutation in the alpha cardiac myosin heavy chain gene. J. Clin. Invest. 103:147–153.PubMedCrossRefGoogle Scholar
  42. 42.
    Tardiff, J.C., Hewett, T.E., Palmer, BM., et al. 1999. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J. Clin. Invest. 104:469–481.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Daniel E. Michele
  • Joseph M. Metzger

There are no affiliations available

Personalised recommendations