Skip to main content

Derived Equivalences and Tilting Theory

  • Conference paper
International Symposium on Ring Theory

Part of the book series: Trends in Mathematics ((TM))

Abstract

The aim of this article is to survey aspects of tilting theory. In the last 25 years the idea of tilting has emerged from rather special situations in terms of reflection functors [BGP] to a thorough investigation of derived categories of abelian categories admitting a tilting complex. It is impossible to survey here a full account of these developments. For some historic remarks see [H1] or [K]. Instead we will focus after a general introduction on one particular aspect. This is the theory of quasitilted algebras or equivalently that of hereditary abelian categories with tilting object as introduced in the work with Reiten and Smalø [HRS1].

Dedicated to K. W. Roggenkamp on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Auslander, I. Reiten and S. Smalø, Representation theory of artin algebras, Cambridge Univ. Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  2. A. A. Beilinson, Coherent sheaves onn and problems of linear algebra, Func. Anal. and Appl. 12 (1978), 214–216.

    Article  MathSciNet  Google Scholar 

  3. A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Astérique no 100 (1982).

    Google Scholar 

  4. I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel’s theorem, Russian Math. Surveys 28 (1973), 17–32.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bondal, Representations of associative algebras and coherents sheaves, Math. USSR Izv. 34 (1990), 23–42.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Gabriel, Indecomposable representations II, Symp. Math. Ist. Naz. 11 (1973), 81–104.

    MathSciNet  Google Scholar 

  7. P. P. Grivel, Catégories derivées et foncteurs derives, in Algebraic D-modules, Perspectives in Mathematics 2, Academic Press, New York, 1987.

    Google Scholar 

  8. W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, In: Singularities, representations of algebras, and vector bundles, Lecture Notes in Math. 1273, Springer-Verlag, Heidelberg, New York (1987), 265–297.

    Google Scholar 

  9. W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273–343.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Happel, Triangulated categories in the representation theory of finite dimensional algebras, London Math. Soc. Lecture Note Series 119, Cambridge, 1988.

    Book  MATH  Google Scholar 

  11. D. Happel, On the derived category of a finite dimensional algebra, Comment. Math. Helvet. 62 (1987), 339–389.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Happel, Quasitilted algebras, Algebras and Modules I, CMS Conference Proceedings 23 (1996), 55–82.

    MathSciNet  Google Scholar 

  13. D. Happel, Hochschild cohomology of piecewise hereditary algebras, Coll. Math. 78 (1998), 261–266.

    MathSciNet  MATH  Google Scholar 

  14. D. Happel, Hochschild cohomology of finite dimensional algebras, Sémi-naire d’Algébre Paul Dubreil et Marie-Paul Malliavin, Lecture Notes in Math. 1404, Springer-Verlag, Heidelberg, New York (1989), 108–126.

    Google Scholar 

  15. D. Happel, Applications of Hochschild cohomology to hereditary categories with tilting object, in preparation.

    Google Scholar 

  16. R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer-Verlag, Heidelberg, New York, 1966.

    MATH  Google Scholar 

  17. D. Happel and I. Reiten, An introduction to quasitilted algebras An. St. Univ. Ovidius Constantza, 4 (1996), 137–149.

    MathSciNet  MATH  Google Scholar 

  18. D. Happel and I. Reiten, Directing objects in hereditary categories, Proceedings Seattle Conference 1997, Cont. Math. 229 (1998), 169–180.

    Article  MathSciNet  Google Scholar 

  19. D. Happel and I. Reiten, On hereditary categories with tilting objects, Math. Z., to appear.

    Google Scholar 

  20. D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399–443.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Happel and I. H. Slungåd, One-point extensions of hereditary algebras, Proceedings ICRA VIII, CMS Conference Proceedings 24 (1996), 285–292.

    Google Scholar 

  22. D. Happel, I. Reiten and S. O. Smalø, Tilting in Abelian Categories and Quasitilted Algebras, Memoirs 575, Amer. Math. Soc., 1996.

    Google Scholar 

  23. D. Happel, I. Reiten and S. O. Smalø, Piecewise hereditary algebras, Arch. Math. 66 (1996), 182–186.

    Article  MATH  Google Scholar 

  24. St. König, Auslander-Reiten sequences and tilting theory, An. St. Univ. Ovidius Constantza, 4 (1996), 136–169.

    Google Scholar 

  25. H. Lenzing, Hereditary noetherian categories with a tilting complex, Proc. Amer. Math. Soc. 125 (1997), 1893–1901.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Leming and J. A. de la Peña, Wild canonical algebras, Math. Z. 224 (1997), 403–425.

    Article  MathSciNet  Google Scholar 

  27. H. Leming and J. A. de la Peña, Concealed canonical algebras and separating tubular family, preprint.

    Google Scholar 

  28. H. Meltzer, Exceptional vector bundles, tilting sheaves and tilting complexes on weighted projective lines, preprint.

    Google Scholar 

  29. J. Rickard, Derived equivalences as derived functors, J. London Math. Soc. 43 (1991), 37–48.

    Article  MathSciNet  MATH  Google Scholar 

  30. C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099, Springer-Verlag, Heidelberg, New York, 1984.

    MATH  Google Scholar 

  31. C. M. Ringel, The canonical algebras, In: Topics in Algebra, Banach Center Publications, 26 PWN, Warsaw 1990,407–432.

    Google Scholar 

  32. A. Skowroński, Tame quasitilted algebras, J. Agebra 203 (1998), 470–490.

    Article  MATH  Google Scholar 

  33. J. L. Verdier, Catégories dérivées, état 0, In: SGA 4 1/2, Lecture Notes in Math. 569, Springer-Verlag, Heidelberg, New York (1977), 262–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Happel, D. (2001). Derived Equivalences and Tilting Theory. In: Birkenmeier, G.F., Park, J.K., Park, Y.S. (eds) International Symposium on Ring Theory. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0181-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0181-6_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6650-1

  • Online ISBN: 978-1-4612-0181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics