Skip to main content

Semicentral Reduced Algebras

  • Conference paper

Part of the book series: Trends in Mathematics ((TM))

Abstract

An idempotent e of an algebra R is left semicentral if Re = eRe. If 0 and 1 are the only left semicentral idempotents in R, then R is called semicentral reduced. Recent results on generalized triangular matrix algebras and semicentral reduced algebras are surveyed. New results are provided for endomorphism algebras of modules and for semicentral reduced algebras. In particular, semicentral reduced rings which are right FPF, right nonsingular, or left perfect are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, Heidelberg, New York, 1974.

    Book  Google Scholar 

  2. G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983), 567–580.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. F. Birkenmeier, A generalization of FPF rings, Comm. Algebra 17 (1989), 855–884.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hung. 59 (1992), 319–326.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. F. Birkenmeier, When does a supernilpotent radical essentially split off?, J. Algebra 172 (1995), 49–60.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim, and J. K. Park, Triangular matrix representations, J. Algebra 230 (2000), 558–595.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, A couterexample for CS-rings, Glasgow Math. J. 42 (2000), 263–269.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. F. Birkenmeier, B. J. Müller, and S. T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand, Preprint.

    Google Scholar 

  9. K. A. Brown, The singular ideals of group rings, Quart. J. Math. Oxford 28(2) (1977), 41–60.

    Article  MATH  Google Scholar 

  10. S. U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J. 18 (1961), 13–25.

    MathSciNet  MATH  Google Scholar 

  11. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 24 (1967), 417–423.

    Article  Google Scholar 

  12. C. Faith, Injective quotient rings of commutative rings, Module Theory, Lecture Notes in Math. 700, Springer-Verlag, Heidelberg, New York (1979), 151–203.

    Google Scholar 

  13. C. Faith and S. Page, FPF Ring Theory: Faithful Modules and Generators of Mod-R, London Math. Soc. Lecture Notes Series 88, Cambridge Univ. Press, Cambridge, 1984.

    MATH  Google Scholar 

  14. K. R. Goodearl, Von Neumann Regular Rings (2nd edition), Krieger, Malabar, 1991.

    MATH  Google Scholar 

  15. T. Y. Lam, A First Course in Noncommutative Rings, SpringerVerlag, Heidelberg, New York, 1991.

    Book  MATH  Google Scholar 

  16. J. Lawrence, A singular primitive ring, Proc. Amer. Math. Soc. 45 (1974), 59–62.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Birkenmeier, G.F., Kim, J.Y., Park, J.K. (2001). Semicentral Reduced Algebras. In: Birkenmeier, G.F., Park, J.K., Park, Y.S. (eds) International Symposium on Ring Theory. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0181-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0181-6_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6650-1

  • Online ISBN: 978-1-4612-0181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics