Nonlinear Dynamics and Statistics pp 387-412 | Cite as

# Data Compression, Dynamics, and Stationarity

## Abstract

One of the main themes of this book is the considerable progress that has been made in modeling data from nonlinear systems that may be affected by noise. In this chapter, we describe a modeling method based on an idealization that gives fast algorithms with known properties based on rigorous results from data-compression theory. The idealization is that the system outputs symbols from a finite alphabet, rather than outputting a real number; we also make a reasonable assumption which is the discrete analogue of the standard embedding theorem. The models that result can be used to simulate and to estimate many of the usual dynamically interesting quantities such as topological entropy. They are also well-suited for a specific new application: testing the stationarity of time-series of discrete symbols, whether two data streams appear to originate from the same underlying unknown dynamical system.

### Keywords

Combustion Entropy Stake Iterate Dynamic## Preview

Unable to display preview. Download preview PDF.

### References

- [1]H. D. I. Abarbanel.
*Analysis of Observed Chaotic Data*. Institute for Nonlinear Science. Springer, New York, 1996.MATHCrossRefGoogle Scholar - [2]R. Brown, V. In, and E.R. Tracy. Parameter uncertainties in models of equivariant dynamical systems.
*Physica D*, 102 (3–4): 208–226, 1997.MathSciNetMATHCrossRefGoogle Scholar - [3]M. Casdagli. Nonlinear prediction of chaotic time series.
*Physica D*, 35 (3): 335–356, 1989.MathSciNetMATHCrossRefGoogle Scholar - [4]T. Cover and J. Thomas.
*Elements of Information Theory*. Wiley Interscience, New York, 1991.MATHCrossRefGoogle Scholar - [5]C S Daw, M B Kennel, C E A Finney, and F T Connolly. Observing and modeling nonlinear dynamics in an internal combustion engine.
*Phys. Rev. E*, 57 (3-A): 2811–2819, 1998.CrossRefGoogle Scholar - [6]C.S. Daw, Finney C.E.A., Vasudevan M., N.A. van Goor, K. Nguyen, D.D. Bruns, E.J. Kostelich, C. Grebogi, Ott E., and J.A. Yorke. Self-organization and chaos in a fluidized bed.
*Phys. Rev. Lett*, (75): 2308–2311, 1995.Google Scholar - [7]J. D. Farmer and J. J. Sidorowich. Predicting chaotic time series.
*Phys. Rev. Letters*, 59 (8): 845–848, 1987.MathSciNetMATHCrossRefGoogle Scholar - [8]A. Fraser. Information and entropy in strange attractors.
*IEEE Trans. Information Theory*, 35: 245–262, 1989.MathSciNetMATHCrossRefGoogle Scholar - [9]A. M. Fraser and H. L. Swinney. Independent coordinates for strange attractors from mutual information.
*Physical Review A*, 33 (2): 1134–1140, 1986.MathSciNetMATHCrossRefGoogle Scholar - [10]G. Froyland, K. Judd, A. I. Mees, K. Murao, and D. Watson. Constructing invariant measures from data.
*International Journal of Bifurcation and Chaos*, 5 (4): 1181–1192, 1995.MATHCrossRefGoogle Scholar - [11]D.E. Harrison and N.K. Larkin. Darwin sea level pressure, 1876–1996: evidence for climate change?
*Geophys. Res. Lett*, 24: 1779–1782, 1997.CrossRefGoogle Scholar - [12]K. Judd and A. I. Mees. On selecting models for nonlinear time series.
*Physica D*, 82: 426–444, 1995.MATHCrossRefGoogle Scholar - [13]K. Judd and A. I. Mees. Embedding as a modeling problem.
*Physics D*, 120: 273–286, 1998.MATHCrossRefGoogle Scholar - [14]M. B. Kennel, R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction.
*Physical Review A*, 45 (6): 3403–3411, 1992.CrossRefGoogle Scholar - [15]M.B. Kennel. Statistical test for dynamical nonstationarity in observed time-series data.
*Phys. Rev. E*, 78: 316, 1997.CrossRefGoogle Scholar - [16]M. Li and P.M.B. Vitanyi.
*An Introduction to Kolmogorov Complexity and its Applications*. Springer, New York, 2nd edition, 1997.MATHGoogle Scholar - [17]D. Lind and B. Marcus.
*Symbolic Dynamics and Coding*. Cambridge University Press, 1995.Google Scholar - [18]E.N. Lorenz.
*Talus*, 36A:98–110, 1984. The model is*dx/dt = -y**2**- z**2**-*a(*x*-*F*),*dy/dt*=*xy - bxz - y+*1, dzidt =*bxy + xz*- z, a = 1/4,*b =*4,*F =*8. Each set*was*5000 points long sampled every öt = 0. 08.Google Scholar - [19]A. I. Mees. Modelling complex systems. In T. Vincent, A. I. Mees, and L. S. Jennings, editors,
*Dynamics of Complex Interconnected Biological Systems*, volume 6 of*Mathematical Modeling*, pages 104–124. Birkhauser, Boston, 1990.CrossRefGoogle Scholar - [20]A. I. Mees. Dynamical systems and tesselations: Detecting determinism in data.
*International Journal of Bifurcation and Chaos*, 1(4): 777–794, 1991.MathSciNetMATHCrossRefGoogle Scholar - [21]A. I. Mees. Parsimonious dynamical reconstruction.
*International Journal of Bifurcation and Chaos*, 3 (3): 669–675, 1993.MathSciNetMATHCrossRefGoogle Scholar - [22]B. Pilgram, K. Judd, and A. I. Mees. Modelling the dynamics of nonlinear time series using canonical variate analysis.
*Physica D*, in press, 2000.Google Scholar - [23]J. Rissanen. Universal coding, information, prediction and estimation.
*IEEE ‘flans. Inf. Theory*, IT-30(4): 629–636, 1984.MathSciNetMATHCrossRefGoogle Scholar - [24]J. Rissanen.
*Stochastic Complexity in Statistical Inquiry*, volume 15 of*Series in Computer Science*. World Scientific, Singapore, 1989.Google Scholar - [25]T. Schreiber. Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions.
*Phys. Rev. Lett.*, 78: 843, 1997.CrossRefGoogle Scholar - [26]Y.M. Shtarkov, T.J. Tjalkens, and F.M.J. Willems. Multialphabet weighting universal coding of context tree sources.
*Problems of Information Transmission*, 33 (1): 17–28, 1997.MathSciNetGoogle Scholar - [27]J. Stark, D.S. Broomhead, M.E. Davies, and J. Huke. Takens embedding theorems for forced and stochastic systems.
*Nonlinear Analysis*, 30: 5303–5314, 1997.MathSciNetCrossRefGoogle Scholar - [28]G. Sugihara and R. M. May. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344: 734–741, 1990.CrossRefGoogle Scholar
- [29]F. Takens. Detecting strange attractors in turbulence. In D. A. Rand and L. S. Young, editors,
*Dynamical Systems and Turbulence*, volume 898 of Lecture*Notes in Mathematics*, pages 365–381. Springer, Berlin, 1981.Google Scholar - [30]X.Z. Tang, E.R. Tracy, Boozer A.D., A. deBrauw, and R. Brown. Symbol sequence statistics in noisy chaotic signal reconstruction.
*Phys. Rev. E*, 51: 3871, 1995.CrossRefGoogle Scholar - [31]K.E. Trenberth and T.J. Hoar. The 1990–1995 el nino-southern oscillation event: longest on record.
*Geophys. Res. Lett*, 23: 57–60, 1996.CrossRefGoogle Scholar - [32]A. S. Weigend, B. A. Huberman, and D. E. Rumelhart. Predicting the future: A connectionist approach.
*International Journal of Neural Systems*, Vol 1 (No 3): 193–209, 1990.CrossRefGoogle Scholar - [33]F.M.J. Willems. The context tree weighting method: Extensions.
*IEEE Trans**IT*, 44 (2): 792–798, 1998.MathSciNetMATHCrossRefGoogle Scholar - [34]F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. The context tree weighting method: Basic properties.
*IEEE Trans IT*, 41 (2): 653–664, 1995.MathSciNetMATHCrossRefGoogle Scholar - [35]A. Witt, J. Kurths, and A. Pikovsky. Testing stationarity in time series.
*Phys. Rev. E*, 58: 1800, 1998.CrossRefGoogle Scholar - [36]L.-S. Young. Entropy, Lyapunov exponents, and Hausdorff dimension in differentiable dynamical systems.
*IEEE Transactions on Circuits and Systems*, CAS-30(8): 599–607, 1983.CrossRefGoogle Scholar