Skip to main content

Data Compression, Dynamics, and Stationarity

  • Chapter
Nonlinear Dynamics and Statistics

Abstract

One of the main themes of this book is the considerable progress that has been made in modeling data from nonlinear systems that may be affected by noise. In this chapter, we describe a modeling method based on an idealization that gives fast algorithms with known properties based on rigorous results from data-compression theory. The idealization is that the system outputs symbols from a finite alphabet, rather than outputting a real number; we also make a reasonable assumption which is the discrete analogue of the standard embedding theorem. The models that result can be used to simulate and to estimate many of the usual dynamically interesting quantities such as topological entropy. They are also well-suited for a specific new application: testing the stationarity of time-series of discrete symbols, whether two data streams appear to originate from the same underlying unknown dynamical system.

Author for correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. D. I. Abarbanel. Analysis of Observed Chaotic Data. Institute for Nonlinear Science. Springer, New York, 1996.

    Book  MATH  Google Scholar 

  2. R. Brown, V. In, and E.R. Tracy. Parameter uncertainties in models of equivariant dynamical systems. Physica D, 102 (3–4): 208–226, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Casdagli. Nonlinear prediction of chaotic time series. Physica D, 35 (3): 335–356, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Cover and J. Thomas. Elements of Information Theory. Wiley Interscience, New York, 1991.

    Book  MATH  Google Scholar 

  5. C S Daw, M B Kennel, C E A Finney, and F T Connolly. Observing and modeling nonlinear dynamics in an internal combustion engine. Phys. Rev. E, 57 (3-A): 2811–2819, 1998.

    Article  Google Scholar 

  6. C.S. Daw, Finney C.E.A., Vasudevan M., N.A. van Goor, K. Nguyen, D.D. Bruns, E.J. Kostelich, C. Grebogi, Ott E., and J.A. Yorke. Self-organization and chaos in a fluidized bed. Phys. Rev. Lett, (75): 2308–2311, 1995.

    Google Scholar 

  7. J. D. Farmer and J. J. Sidorowich. Predicting chaotic time series. Phys. Rev. Letters, 59 (8): 845–848, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Fraser. Information and entropy in strange attractors. IEEE Trans. Information Theory, 35: 245–262, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. M. Fraser and H. L. Swinney. Independent coordinates for strange attractors from mutual information. Physical Review A, 33 (2): 1134–1140, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Froyland, K. Judd, A. I. Mees, K. Murao, and D. Watson. Constructing invariant measures from data. International Journal of Bifurcation and Chaos, 5 (4): 1181–1192, 1995.

    Article  MATH  Google Scholar 

  11. D.E. Harrison and N.K. Larkin. Darwin sea level pressure, 1876–1996: evidence for climate change? Geophys. Res. Lett, 24: 1779–1782, 1997.

    Article  Google Scholar 

  12. K. Judd and A. I. Mees. On selecting models for nonlinear time series. Physica D, 82: 426–444, 1995.

    Article  MATH  Google Scholar 

  13. K. Judd and A. I. Mees. Embedding as a modeling problem. Physics D, 120: 273–286, 1998.

    Article  MATH  Google Scholar 

  14. M. B. Kennel, R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45 (6): 3403–3411, 1992.

    Article  Google Scholar 

  15. M.B. Kennel. Statistical test for dynamical nonstationarity in observed time-series data. Phys. Rev. E, 78: 316, 1997.

    Article  Google Scholar 

  16. M. Li and P.M.B. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications. Springer, New York, 2nd edition, 1997.

    MATH  Google Scholar 

  17. D. Lind and B. Marcus. Symbolic Dynamics and Coding. Cambridge University Press, 1995.

    Google Scholar 

  18. E.N. Lorenz. Talus, 36A:98–110, 1984. The model is dx/dt = -y 2 - z 2 - a(x - F), dy/dt = xy - bxz - y+ 1, dzidt = bxy + xz - z, a = 1/4, b = 4, F = 8. Each set was 5000 points long sampled every öt = 0. 08.

    Google Scholar 

  19. A. I. Mees. Modelling complex systems. In T. Vincent, A. I. Mees, and L. S. Jennings, editors, Dynamics of Complex Interconnected Biological Systems, volume 6 of Mathematical Modeling, pages 104–124. Birkhauser, Boston, 1990.

    Chapter  Google Scholar 

  20. A. I. Mees. Dynamical systems and tesselations: Detecting determinism in data. International Journal of Bifurcation and Chaos, 1(4): 777–794, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. I. Mees. Parsimonious dynamical reconstruction. International Journal of Bifurcation and Chaos, 3 (3): 669–675, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Pilgram, K. Judd, and A. I. Mees. Modelling the dynamics of nonlinear time series using canonical variate analysis. Physica D, in press, 2000.

    Google Scholar 

  23. J. Rissanen. Universal coding, information, prediction and estimation. IEEE ‘flans. Inf. Theory, IT-30(4): 629–636, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Rissanen. Stochastic Complexity in Statistical Inquiry, volume 15 of Series in Computer Science. World Scientific, Singapore, 1989.

    Google Scholar 

  25. T. Schreiber. Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions. Phys. Rev. Lett., 78: 843, 1997.

    Article  Google Scholar 

  26. Y.M. Shtarkov, T.J. Tjalkens, and F.M.J. Willems. Multialphabet weighting universal coding of context tree sources. Problems of Information Transmission, 33 (1): 17–28, 1997.

    MathSciNet  Google Scholar 

  27. J. Stark, D.S. Broomhead, M.E. Davies, and J. Huke. Takens embedding theorems for forced and stochastic systems. Nonlinear Analysis, 30: 5303–5314, 1997.

    Article  MathSciNet  Google Scholar 

  28. G. Sugihara and R. M. May. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344: 734–741, 1990.

    Article  Google Scholar 

  29. F. Takens. Detecting strange attractors in turbulence. In D. A. Rand and L. S. Young, editors, Dynamical Systems and Turbulence, volume 898 of Lecture Notes in Mathematics, pages 365–381. Springer, Berlin, 1981.

    Google Scholar 

  30. X.Z. Tang, E.R. Tracy, Boozer A.D., A. deBrauw, and R. Brown. Symbol sequence statistics in noisy chaotic signal reconstruction. Phys. Rev. E, 51: 3871, 1995.

    Article  Google Scholar 

  31. K.E. Trenberth and T.J. Hoar. The 1990–1995 el nino-southern oscillation event: longest on record. Geophys. Res. Lett, 23: 57–60, 1996.

    Article  Google Scholar 

  32. A. S. Weigend, B. A. Huberman, and D. E. Rumelhart. Predicting the future: A connectionist approach. International Journal of Neural Systems, Vol 1 (No 3): 193–209, 1990.

    Article  Google Scholar 

  33. F.M.J. Willems. The context tree weighting method: Extensions. IEEE Trans IT, 44 (2): 792–798, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  34. F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. The context tree weighting method: Basic properties. IEEE Trans IT, 41 (2): 653–664, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Witt, J. Kurths, and A. Pikovsky. Testing stationarity in time series. Phys. Rev. E, 58: 1800, 1998.

    Article  Google Scholar 

  36. L.-S. Young. Entropy, Lyapunov exponents, and Hausdorff dimension in differentiable dynamical systems. IEEE Transactions on Circuits and Systems, CAS-30(8): 599–607, 1983.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kennel, M.B., Mees, A.I. (2001). Data Compression, Dynamics, and Stationarity. In: Mees, A.I. (eds) Nonlinear Dynamics and Statistics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0177-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0177-9_16

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6648-8

  • Online ISBN: 978-1-4612-0177-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics