Skip to main content

The Inhomogeneous Cauchy-Riemann Equation and Runge’s Theorem

  • Chapter
Complex Analysis in One Variable

Abstract

Holomorphic functions are characterized by the equation ∂É/∂z = 0. In this chapter, we shall study the equation ∂É/∂̄z = g when g has compact support. We shall obtain an explicit solution which leads to a variant of the Cauchy integral formula. This variant can often be used instead of the usual Cauchy formula, and has the advantage of not involving winding numbers. We shall illustrate this principle with a variant of the argument principle and a proof of the Runge theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlfors, L. V.: Complex Analysis, 3rd ed., McGraw-Hill, New York, 1979.

    MATH  Google Scholar 

  2. Behnke, H. and K. Stein: Entwicklungen analytischer Funktionen auf Riemannschen Rächen, Math. Annalen 120 (1948), 430–461.

    Article  MathSciNet  Google Scholar 

  3. Forster, O.: Riemannscke Flächen, Springer, 1977 (English translation: Riemann Sur- faces, Springer 1981).

    Book  Google Scholar 

  4. Heins, M.: Complex Function Theory, Academic Press, New York, 1968.

    MATH  Google Scholar 

  5. Hilbert, D.: Über die Entwicklung einer beliebigen analytischen Funktion einer Variablen in eine unendliche nach ganzen rationalen Funktionen fortschreitende Reihe, Göttinger Nachr. 1897, 63–70. (Collected Works, vol. 3, 3–9.)

    Google Scholar 

  6. Malgrange, B.: Existence et approximation des solutions des equations aux dérivées par- tielles et des equations de convolution, Annales de l’Inst. Fourier 6 (1955), 271–355.

    Article  MathSciNet  Google Scholar 

  7. Narasimhan, R.: Analysis on Real and Complex Manifolds, North-Holland, 1968.

    MATH  Google Scholar 

  8. Runge, C: Zur Theorie der eindeutigen analytischen Funktionen, Acta Math. 6 (1885), 229–244.

    Article  MathSciNet  MATH  Google Scholar 

  9. Saks, S. and A. Zygmund: Analytic Functions, Warsaw, 1952.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Narasimhan, R., Nievergelt, Y. (2001). The Inhomogeneous Cauchy-Riemann Equation and Runge’s Theorem. In: Complex Analysis in One Variable. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0175-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0175-5_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6647-1

  • Online ISBN: 978-1-4612-0175-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics