Elementary Theory of Holomorphic Functions

  • Raghavan Narasimhan
  • Yves Nievergelt


In this chapter, we shall develop the classical theory of holomorphic functions. The Looman—Menchoff theorem, proved in §1.6, is less standard than the rest of the material.


Holomorphic Function Meromorphic Function Elementary Theory Laurent Expansion Open Mapping Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ahlfors, L. V.: Complex Analysis, 3rd ed. New York, McGraw-Hill, 1979.MATHGoogle Scholar
  2. [2]
    Cartan, H.: Théorie élémentaire des fonctions analytiques d’une ouplusieurs variables complexes, Paris, 1961. (English translation: Elementary Theory of Analytic Functions of One or Several Complex Variables, Addison-Wesley, 1963.)Google Scholar
  3. [3]
    Connell, E. H. and P. Porcelli: A proof of the power series expansion without Cauchy’s formula, Bull Amer. Math. Soc. 67 (1961), 177–81.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Conway, J. B.: Functions of One Complex Variable, Springer, 1973.MATHCrossRefGoogle Scholar
  5. [5]
    Hurwitz, A. and R. Courant: Funktionentheorie, 4th ed., with an appendix by H. Röhrl. Springer, 1964.MATHGoogle Scholar
  6. [6]
    Looman, H.: Über die Cauchy-Riemannschen Differentialgleichungen, Göttinger Nach. (1923): 97–108.Google Scholar
  7. [7]
    Menchoff, D.: Les conditions de monogénéité, Paris, 1936.Google Scholar
  8. [8]
    Montel, P.: Sur les différentielles totales et les fonctions monégenes, C. R. Acad. Sci. Paris 156 (1913), 1820–1822.MATHGoogle Scholar
  9. [9]
    Plunkett, R. L.: A topological proof of the continuity of the derivative of a function of a complex variable, Bull. Amer. Math. Soc. 65 (1959), 1–4.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Rudin, W.: Real and Complex Analysis, New York, McGraw-Hill, 1966.MATHGoogle Scholar
  11. [11]
    Saks, S.: Theory of the Integral, 2nd ed. Warsaw, 1937, Dover reprint: 1954.Google Scholar
  12. [12]
    Saks, S. and A. Zygmund: Analytic Functions, Warsaw, 1952.MATHGoogle Scholar
  13. [13]
    Whyburn, G. T.: Topological analysis, 2nd ed., Princeton, 1964.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Raghavan Narasimhan
    • 1
  • Yves Nievergelt
    • 2
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Department of MathematicsEastern Washington UniversityCheneyUSA

Personalised recommendations