Skip to main content

Part of the book series: Trends in Mathematics ((TM))

Abstract

This paper is concerned with the fluid dynamics modeled by the stochastic flow

$$\left\{ {\begin{array}{*{20}{l}} {\dot \eta (t,x) = u(t,\eta (t,x)) + \sigma (t,\eta (t,x)) \circ \dot W,} \\ {\eta (0,x) = x,} \end{array}} \right.$$

where the turbulent term is driven by the white noise \(\dot W\). The motivation for this setting is to understand the motion of fluid parcels in turbulent and randomly forced fluid flows. Stochastic Euler and Navier-Stokes equations for the undetermined components u(t,x) and σ(t,x) of the spatial velocity field are derived from first principles. The resulting equations include as particular cases the deterministic Navier-Stokes and Euler equations as well as these equations with stochastic forcing We also discuss existence of global weak solutions of the stochastic Navier-Stokes equation in Rd for d = 2, 3. Uniqueness of a solution is established in the case d=2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Arnold, Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamic des fluides parfaits, Ann. Inst. Grenoble, 16 (1966), 319–361.

    Article  Google Scholar 

  2. A. Bensoussan and R. Temam, Equations stochastique du type Navier-Stokes, J. Func. Anal., 13 (1973) 195–222.

    Article  MathSciNet  MATH  Google Scholar 

  3. Z. Brzeiniak, M.Caphiski, and F. Flandoli, Stochastic partial differential equations and turbulence, Mathematical Models and Methods in Applied Sciences, 1(1) (1991), 41–59.

    Article  MathSciNet  Google Scholar 

  4. Z. Brzeiniak and S. Pezat, Stochastic two dimensional Euler equations, Preprint, 1999.

    Google Scholar 

  5. M. Capiriski and N. J. Cutland, Stochastic Navier-Stokes equations, Acta Applicandae Mathematicae, 25 (1991), 59–85.

    Article  MathSciNet  Google Scholar 

  6. A.J. Chorin and J. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, 1990.

    Book  MATH  Google Scholar 

  7. D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102–163.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Relat. Fields, 102 (1995), 367–391.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, New York, 1990.

    MATH  Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Addison Wesley, Reading, Mass. 1959.

    Google Scholar 

  11. A. Inoue and T. Funaki, Comm. Math. Phys., 65 (1979), 83–90.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Marsden, Applications of Global Analysis in Mathematical Physics, Publish or Perish, 1974.

    Google Scholar 

  13. R. Mikulevicius and G. Valiukevicius, On stochastic Euler equation in Rd, Electronic J. of Prob., 5 (2000), 1–20.

    MathSciNet  Google Scholar 

  14. R. Mikulevicius and B. L. Rozovskii, Martingale problems for stochastic PDE’s. In Stochastic Partial Differential Equations: Six Perspectives (Editors: R. Carmona and B. L. Rozovskii), Mathematical Surveys and Monographs Series 64, AMS, Providence, RI, 1998.

    Google Scholar 

  15. B. L. Rozovskii, Stochastic Evolution Systems, Kluwer Academic Publishers, Dordrecht, 1990.

    MATH  Google Scholar 

  16. M. Viot, Solutions faibles d’equation aux derives partielles stochastiquess non lineaires, These de doctorat, Paris VI, 1976.

    Google Scholar 

  17. L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solution of the Navier-Stokes equations, Communications in Pure and Applied Math., 35 (1982), 771–831.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mikulevicius, R., Rozovskii, B. (2001). On Equations of Stochastic Fluid Mechanics. In: Hida, T., Karandikar, R.L., Kunita, H., Rajput, B.S., Watanabe, S., Xiong, J. (eds) Stochastics in Finite and Infinite Dimensions. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0167-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0167-0_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6643-3

  • Online ISBN: 978-1-4612-0167-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics