Skip to main content

Time Maps in the Study of Feynman’s Operational Calculus via Wiener and Feynman Path Integrals

  • Chapter

Part of the book series: Trends in Mathematics ((TM))

Abstract

It is known that Wiener and Feynman path integrals provide one way of making Feynman’s heuristic operational calculus for noncommuting operators mathematically rigorous. The disentangling process and associated operator orderings are central to Feynman’s ideas. We begin here to study the effects of time maps in clarifying the disentangling process and in altering the operator orderings in certain prescribed ways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Feynman. Space-time approach to non-relativistic quantum mechanics.Rev. Modern Phys.20:367–387, 1948.

    Article  MathSciNet  Google Scholar 

  2. R. Feynman. Space-time approach to quantum electrodynamics.Phys. Rev.76:769–789, 1949.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Feynman. Mathematical formulation of the quantum theory of electromagnetic interaction.Phys. Rev.80:440–457, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Feynman. An operator calculus having applications in quantum electrodynamics.Phys. Rev.84:108–128, 1951.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Feynman, and A. Hibbs.Quantum Mechanics and Path Integrals.McGraw-Hill, New York, 1965.

    MATH  Google Scholar 

  6. B. Jefferies, G. W. Johnson, and L. Nielsen. Feynman’s operational calculi for time-dependent noncommuting operators. Accepted for publication by J. Korean Math. Soc., Proceedings of the Seoul Conference on Feynman Integrals and Related Topics.

    Google Scholar 

  7. G. W. Johnson and G. Kallianpur. Stochastic Dyson series and the solution to stochastic evolution equations.Stochastic Analysis and Mathematical Physics Anestoc ‘86 (ed. R. Rebolledo), pp. 82–108. World Scientific, Singapore, 1998.

    Google Scholar 

  8. G. W. Johnson and M. L. Lapidus.The Feynman integral and Feynman’s operational calculus, Oxford Mathematical Monographs, Oxford Univ. Press, 2000.

    Google Scholar 

  9. G. W. Johnson and M. L. Lapidus. Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus.Memoirs Amer. Math. Soc. 62No. 351, 1–78, 1986.

    MathSciNet  Google Scholar 

  10. G. W. Johnson and M. L. Lapidus. Noncommutative operations on Wiener functionals and Feynman’s operational calculus.J. Functional Anal.81:74–99, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. W. Johnson and L. Nielsen. A stability theorem for Feynman’s operational calculus. Accepted for publication by Canadian Math. Soc., Proceedings of the Conference in honor of Sergio Albeverio’s 60th birthday.

    Google Scholar 

  12. G. W. Johnson and Y. H. Park. Decomposing the disentangling algebra on Wiener space. Accepted for publication byRocky Mountain J. of Math.

    Google Scholar 

  13. L. Johnson. The effect of time changes on Feynman’s operational calculus as made rigorous by Wiener and Feynman integrals. Thesis, Univ. of Nebraska-Lincoln, 2000.

    Google Scholar 

  14. M. Krasnosel’skii and Y. Rutickii.Convex Functions and Orlicz Spaces.Translated by L. Boron, P. Noordhoff Ltd., The Netherlands, 1961

    Google Scholar 

  15. M. L. Lapidus. The differential equation for the Feynman-Kac formula with a Lebesgue-Stieltjes measure.Lett. Math. Phys.11:1–13, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. L. Lapidus. The Feynman-Kac formula with a Lebesgue-Stieltjes measure and Feynman’s operational calculus.Stud. Appl. Math.76:93–132, 1987.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, G.W., Johnson, L. (2001). Time Maps in the Study of Feynman’s Operational Calculus via Wiener and Feynman Path Integrals. In: Hida, T., Karandikar, R.L., Kunita, H., Rajput, B.S., Watanabe, S., Xiong, J. (eds) Stochastics in Finite and Infinite Dimensions. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0167-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0167-0_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6643-3

  • Online ISBN: 978-1-4612-0167-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics