Skip to main content

Part of the book series: Trends in Mathematics ((TM))

  • 622 Accesses

Abstract

Let g be a Riemannian metric on a Euclidean space. The Levi-Civita Laplace-Beltrami operator Δ generates a diffusion semi-group. We denote the heat kernel by p(t,x, y). The following estimate is called a Gaussian bound on the heat kernel: there exist 0 < δ1 < 1,δ2 > 0 and C1, C2 > 0 such that for any t > 0, here d(x, y) denotes the Riemannian distance between x and y. In this article, we will study more precise estimates on the lower bound for a fixed x as follows: there exists a positive constant C such that for any 0t<1, ost bounds (1.1) in the literature (cf. [3]) are not precise in the sense that δ1 > 0, except for Li-Yau’s result in [7] which asserts that (1.2) holds with under the assumption that Ric > 0. To my knowledge, there seems to be no other criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Aida, Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded diffusion coefficients on loop spacesJ. Funct. Anal174 430–477, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. D.G. Aronson, Non-negative solutions of linear parabolic equationsAnn. Sci. Norm. Sup. Pisa22 (3), 607–694, (1968).

    MathSciNet  MATH  Google Scholar 

  3. E.B. DaviesHeat Kernels and Spectral TheoryCambridge Univ. Press, (1989).

    Book  Google Scholar 

  4. A. Debiard, B. Gaveau and E. Mazet, Théorèmes de comparison en géométrie riemannienneResearch Inst. Math. Sci.Kyoto Univ. 12, 391–425, (1976).

    Article  MathSciNet  MATH  Google Scholar 

  5. K.D. ElworthyGeometric Aspects of Diffusions on ManifoldsLec­ture Notes in Math., 1362, Springer-Verlag, 277–425, (1988).

    Google Scholar 

  6. F-Z. Gong and Z-M. Ma, The Log-Sobolev Inequality on Loop Space Over a Compact Riemannian ManifoldJ. Funct. Anal.157, (1998), 599–623.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Li and S.T. Yau, On the parabolic kernel of the Schrödinger oper­atorActa Math.156, (1986), 153–201.

    Article  MathSciNet  Google Scholar 

  8. S. Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernelsThe Annals of Probability15 (1), 1–19, (1987).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aida, S. (2001). Precise Gaussian Lower Bounds on Heat Kernels. In: Hida, T., Karandikar, R.L., Kunita, H., Rajput, B.S., Watanabe, S., Xiong, J. (eds) Stochastics in Finite and Infinite Dimensions. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0167-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0167-0_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6643-3

  • Online ISBN: 978-1-4612-0167-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics