Skip to main content

A Skohorod-Stratonovitch Integral for the Fractional Brownian Motion

  • Conference paper
  • First Online:
Stochastic Analysis and Related Topics VII

Part of the book series: Progress in Probability ((PRPR,volume 48))

Abstract

We give a fairly complete survey of the stochastic integration with respect to the fractional Brownian motion. We also show that a SkohorodStratonovitch type integral can be constructed for any value of the Hurst parameter H and that it coincides with the integral defined as a limit of Riemann sums.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Albs, O. Mazet, and D. Nualart. Stochastic Calculus with Respect to Fractional Brownian Motion with Hurst Parameter less than 1/2. Preprint, Universitat de Barcelona, February 1999.

    Google Scholar 

  2. R. J. Barton and H. Vincent Poor. Signal detection in fractional Gaussian noise. IEEE Trans. on Information Theory, 34(5):943–959, September, 1988.

    Article  Google Scholar 

  3. J. Bertoin. Sur une intégrale pour les processus à a variation bornée. Annals of Probab., 17(4):1521–1535, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Carmona, L. Coutin, and G. Montseny. Applications of a representation of long-memory Gaussian processes. Preprint, 1998.

    Google Scholar 

  5. Z. Ciesielski, G. Kerkyacharian, and B. Roynette. Quelques espaces fonctionnels associés à des processus gaussiens. Studia Mathematica, 107(2):171–204, 1993.

    MathSciNet  MATH  Google Scholar 

  6. W. Dai and C. C. Heyde. Itô’s formula with respect to fractional Brownian motion and its application. J. Appl. and Stochast. Anal., 9:439–458, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Decreusefond and A. S. Ustünel. Stochastic analysis of the fractional Brownian motion. Potential Analysis, 10(2):177–214, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. E. Duncan, Y. Hu, and B. Pasik-Duncan. Stochastic calculus for fractional Brownian Mmotion I, Theory. SIAM J. of Control and Op-tim., to appear, 2000.

    Google Scholar 

  9. D. Feyel and A. de La Pradelle. Capacités gaussiennes. Annales de l’Institut Fourier, 41(1):49–76, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Feyel and A. de La Pradelle. On the Approximate Solutions of the Stratonovitch Equations. Electronic Journal in Probability, 3:1–14, 1998.

    Google Scholar 

  11. D. Feyel and A. de La Pradelle. On Fractional Brownian Processes. Potential Analysis, 10(3):273–288, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Föllmer. Calcul d’Itô sans probabilité. In: Séminaire de probabilités XV, pp. 143–150. Springer-Verlag, 1980.

    Google Scholar 

  13. S. J. Lin. Stochastic Analysis of Fractional Brownian Motions. Stochastics and Stochastics Reports, 55(1–2):121–140, 1995.

    MathSciNet  MATH  Google Scholar 

  14. T. Lyons. Differential Equations Driven by Rough Signals. I. An extension of an inequality of L. C. Young. Mathematical Research Letters, 4:451–464, 1994.

    MathSciNet  Google Scholar 

  15. A. F. Nikiforov and V. B. Uvarov. Special Functions of Mathematical Physics. Birkhäuser, 1988.

    Google Scholar 

  16. I. Norros, E. Valkeila, and J. Virtamo. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli, 5(4):571–587, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Nualart. The Malliavin Calculus and Related Topics. Springer¡ªVerlag, 1995.

    Google Scholar 

  18. D. Nualart and E. Pardoux. Stochastic calculus with anticipative integrals. Probab. Th. Relat. Fields, 78(4):535–582, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional Integrals and Derivatives. Gordon & Breach Science, 1993.

    Google Scholar 

  20. A. S. Ustünel. An Introduction to Analysis on Wiener Space, Lectures Notes in Mathematics, vol. 1610. Springer-Verlag, 1995.

    Google Scholar 

  21. L. C. Young. An inequality of Hölder type, connected with Stieltjes integration. Acta Math., 67:251–282, 1936.

    Article  MathSciNet  Google Scholar 

  22. M. Zähle. Integration with respect to fractal functions and stochastic calculus. Probab. Th. Relat. Fields, 111, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Decreusefond, L. (2001). A Skohorod-Stratonovitch Integral for the Fractional Brownian Motion. In: Decreusefond, L., Øksendal, B.K., Üstünel, A.S. (eds) Stochastic Analysis and Related Topics VII. Progress in Probability, vol 48. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0157-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0157-1_7

  • Published:

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6638-9

  • Online ISBN: 978-1-4612-0157-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics