Skip to main content

On Stochastic Hybrid Zero-Sum Games with Nonlinear Slow Dynamics

  • Chapter
Book cover Advances in Dynamic Games and Applications

Abstract

This paper considers a continuous-time stochastic hybrid system, controlled by two players with opposite objectives (zero-sum game). The parameters of the system may jump at discrete moments of time according to a Markov decision process, namely, a Markov chain that is directly controlled by both players and has finite state and action spaces. Assuming that the length of the intervals between the jumps is defined by a small parameterethe value of this game is shown to have a limit as the small parameter tends to O. This limit is established to coincide with the viscosity solution of some Hamilton—Jacobi-type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman E. and Gaitsgory, V. A hybrid (differential-stochastic) zero-sum game with fast stochastic part, inPreprint Volume Sixth Int. Symp. Dynamic Games and Appl.pp. 475–480, St-Jovite, Quebec, July 13–15, 1994.

    Google Scholar 

  2. Altman, E. and Gaitsgory, V. Asymptotic optimization of a nonlinear hybrid system governed by a markov decision processSIAM J. Cont. Opt. 35 (6):2070–2085,1997.

    Article  MathSciNet  MATH  Google Scholar 

  3. Altman, E., Hordijk, A., and Spieksma, E. M. Contraction conditions for average and a-discount optimality in countable state markov games with unbounded rewardsMOR22, pp. 588–618, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardi, M. and Capuzzo-Dolcetta, I.Optimal Control and Viscosity Solutions of Hamilton—Jacobi—Bellman EquationsBirkhäuser, Boston, 1997.

    Book  MATH  Google Scholar 

  5. Bewley, T. and Kohlberg, E. The asymptotic theory of stochastic gamesMath. Oper. Res. 1 (3):197–208, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bewley, T. and Kohlberg, E. On stochastic games with stationary optimal strategies.Math. Oper. Res. 3 (2):l04–125, 1978.

    Article  MathSciNet  Google Scholar 

  7. Federgruen, A. On N-person stochastic games with denumerable state spaceAdv. Appl. Prob.10, pp. 452–471, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  8. Fleming, W. H. and Soner, H. M.Controlled Markov Processes and Viscosity Solutions.Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  9. Gaitsgory, V. Limit Hamilton—Jacobi—Isaacs equations for singularly perturbed zero-sum differential gamesMath. Anal. Appl.202 (0352):862–899, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hinderer, K.Foundations of Non-Stationary Dynamic Programming with Discrete Time Parametervol. 33 ofLecture Notes in Operations Research and Mathematical SystemsSpringer-Verlag, New York, 1970.

    Book  Google Scholar 

  11. Hordijk, A.Dynamic Programming and Markov Potential Theory2nd ed., Mathematical Centre Tracts51Math. Cntr., Amsterdam, 1977.

    Google Scholar 

  12. Ishii, H. Uniqueness of unbounded viscosity solutions of Hamilton—Jacobi equationsIndiana Univ. Math. J.26, pp. 721–748, 1984.

    Article  Google Scholar 

  13. Kallenberg, L. C. M.Linear Programming and Finite Markovian Control Problems.Mathematical Centre Tracts148Mathe. Cntr., Amsterdam, 1983.

    Google Scholar 

  14. Kleinrock, L.Queuing Systems Vol. II: Computer ApplicationsJohn Wiley, New York, 1976.

    Google Scholar 

  15. Rogers, P. Nonzero-Sum Stochastic Games, Technical Report Report ORC 69–8, Berkeley, Univ. California, Operation Research Center, 1969.

    Google Scholar 

  16. Shi, P., Altman, E., and Gaitsgory, V. On asymptotic optimization for a class of nonlinear stochastic hybrid systemsMath. Meth. Oper. Res. 47 (2):229–315, 1998.

    Article  MathSciNet  Google Scholar 

  17. Sobel, M. Noncooperative stochastic gamesAnn. Math. Stat. 42 pp. 1930–1935, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  18. Sethi, S. P. and Zhang, Q.Hierarchical Decision Making in Stochastic Manufacturing SystemsBirkhauser, Boston, Basel, Berlin, 1994.

    Book  Google Scholar 

  19. Van Der Wal, J.Stochastic Dynamic Programming: Successive Approximations and Nearly Optimal Strategies for Markov Decision Processes and Markov GamesMathematical Centre Tracts139. Math. Cntr., Amsterdam, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nguyen, MT., Altman, E., Gaitsgory, V. (2001). On Stochastic Hybrid Zero-Sum Games with Nonlinear Slow Dynamics. In: Altman, E., Pourtallier, O. (eds) Advances in Dynamic Games and Applications. Annals of the International Society of Dynamic Games, vol 6. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0155-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0155-7_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6637-2

  • Online ISBN: 978-1-4612-0155-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics