On Optimal Missile Guidance Upgrades with Dynamic Stackelberg Game Linearizations

  • Michael H. Breitner
  • Uwe Rettig
  • Oskar von Stryk
Part of the Annals of the International Society of Dynamic Games book series (AISDG, volume 6)

Abstract

We investigate the most critical final homing phase for one intercepting missile versus one maneuverable ballistic missile. In the worst case a future ballistic missile will know the intercepting missile’s guidance scheme and could maximize the minimum (miss) distance. An intercepting missile with three-dimensional proportional navigation guidance is studied. An optimal small guidance upgrade for this missile is calculated as a closed-loop solution of a dynamic Stackelberg game. The intercepting missile acts as leader, whereas the ballistic missile advantageously acts as follower. An optimal small upgrade is approximated numerically along very many optimal trajectories that cover the relevant final homing scenarios. The trajectories are computed efficiently by a direct collocation method. Along the trajectories a linearized minimum—maximum principle using the adjoint variables’ estimates is applied. An upgrade with nearest points on neighboring optimal trajectories is synthesized. Alternative synthesis approaches with local Taylor-series expansions with global smoothing or with artificial neural networks are discussed. Simulations for many different scenarios show the improved interception capability for the upgraded guidance of the intercepting missile.

Keywords

Radar Azimuth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adler, F. P. Missile guidance by three-dimensional proportional navigation, J. Appl. Phys. 27, 1954.Google Scholar
  2. [2]
    Basar, T. and Olsder, G. J. Dynamic Noncooperative Game Theory, Academic Press, London, 1982 (2nd edition, 1995).MATHGoogle Scholar
  3. [3]
    Breitner, M. H. Robust optimale Rückkopplungssteuerungen gegen unvorhersehbare Einflüsse: Differentialspielansatz, numerische Berechnung und Echtzeitapproximation. Extended Ph.d. thesis, VDI Fortschritt-Bericht 596, Series 8 “Mess -, Steuerungsund Regelungstechnik,” VDI-Verlag, Düsseldorf, 1995.Google Scholar
  4. [4]
    Breitner, M. H. and Heim, A. Robust optimal control of a reentering space shuttle, in DGLR-Jahrbuch 1995, Deutsche Gesellschaft für Luft-und Raumfahrt, Bonn, 1995Google Scholar
  5. [5]
    Breitner, M. H. and Pesch, H. J. Reentry trajectory optimization under atmospheric uncertainty as a differential game, Ann. Inter. Soc. Dyn. Games, 1, 1994.Google Scholar
  6. [6]
    Breitner, M. H., Pesch, H. J., and Grimm, W. Complex differential games of pursuit-evasion type with state constraints, Part 1: Necessary conditions for optimal open-loop strategies, Part 2: Numerical computation of optimal open-loop strategies, J. Opt. Th. Appl., 78, 1993.Google Scholar
  7. [7]
    Ehtamo, H. and Raivio, T. A feasible direction method for saddlepoint problems. Proc. 8th Intl. Symp. Dyn. Games and Appl., Vaals, 1998.Google Scholar
  8. [8]
    Imado, F. Some aspects of a realistic three-dimensional pursuit-evasion game. J. Guidance, Cont. Dyn., 16, 1993.Google Scholar
  9. [9]
    Imado, F. and Ishihara, T. Pursuit-evasion geometry analysis between two missiles and an aircraft, Comp. Math. Appl.. 26, 1993.Google Scholar
  10. [10]
    Imado, F., Kuroda, T., and Miwa, S. Optimal midcourse guidance for medium-range air-to-air missiles, J. Guidance, Cont. Dyn., 13, 1990.Google Scholar
  11. [11]
    Imado, F., Kuroda, T. and Tahk, M. J. A trade-off study between conventional and augmented proportional navigation, submitted to J. Guidance, Cont. Dyn., 1998.Google Scholar
  12. [12]
    Gill, P. E., Murray, W., and Wright, M. H. Practical optimization, Academic Press, London 1997 (1st ed., 1981).Google Scholar
  13. [13]
    Krasovskii, N. N. and Subbotin, A. I. Game-Theoretical Control Problems, Springer-Verlag, New York, 1988.MATHCrossRefGoogle Scholar
  14. [14]
    Lachner, R., Breitner, M. H., and Pesch, H. J. Three-dimensional air combat analysis—An example for the numerical solution of complex differential games, Ann. Intl. Soc. Dyn. Games, 3, 1996.Google Scholar
  15. [15]
    Lachner, R., Breitner, M. H., and Pesch, H. J. Real-time collision avoidance against wrong drivers: Differential game approach, numerical solution and synthesis of strategies with neural networks, Ann. Intl. Soc. Dyn. Games, 5, 1998.Google Scholar
  16. [16]
    Lipman, Y. and Shinar, J A linear pursuit-evasion game with a state constraint for a highly maneuverable evader, Ann. Intl. Soc. Dyn. Games, 3, 1995.Google Scholar
  17. [17]
    Macfadzean, R. H. M. Surface-based Air Defense System Analysis, Artech House, Boston, 1992.Google Scholar
  18. [18]
    Pesch, H. J., Gabler, I., Breitner, M. H., and Miesbach, S. Synthesis of optimal strategies for differential games by neural networks, Ann. Intl. Soc. Dyn. Games. 3, 1996.Google Scholar
  19. [19]
    Rettig, U. Verbesserung von Regelalgorithmen mit direkten numerischen Optimierungsverfahren, Diploma thesis, Technische Universität Clausthal, ClausthalZellerfeld, 1998.Google Scholar
  20. [20]
    Shinar, J. and Davidovitz, A. A two-target game analysis in line-of-sight coordinates, Comp. Math. Appl., 13, 1987.Google Scholar
  21. [21]
    Shinar, J. and Gutman, S. Three-dimensional optimal pursuit and evasion with bounded controls, IEEE Trans. Auto. Cont., 25, 1980.Google Scholar
  22. [22]
    Shinar, J. and Shima, T. A new application of Bernhard’s certainty equivalence principle, Proc. 8th Intl. Symp. Dyn. Games Appl., Vaals, 1998.Google Scholar
  23. [23]
    Shinar, J. and Tabak, R. New results in optimal missile avoidance analysis, J. Guidance, Cont. Dyn., 17, 1994.Google Scholar
  24. [24]
    Shinar, J. and Visser, H. G. Synthesis and validation of feedback guidance laws for air-to-air interceptions, Cont. Dyn. Sys., 38, 1990.Google Scholar
  25. [25]
    Shinar, J., Well, K. H., and Järmark, B., Near-Optimal Feedback Control for Three-dimensional Interceptions, 15th ICAS Congress, London, 1986.Google Scholar
  26. [26]
    Stoer, J. and Bulirsch, R. Introduction to Numerical Analysis, Springer-Verlag, New York 1993.MATHGoogle Scholar
  27. [27]
    von Stryk, O. Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen. Ph.d. thesis, Fortschritt-Bericht 441, Series 8 “Meß-, Steuerungs-und Regelungstechnik,” VDI-Verlag, Düsseldorf, 1994.Google Scholar
  28. [28]
    von Stryk, O. Numerical solution of optimal control problems by direct collocation, in Optimal Control, Calculus of Variations, Optimal Control Theory and Numerical Methods, Birkhäuser, Intl. Series of Numerical Mathematics, 111, Basel, 1993.Google Scholar
  29. [29]
    Zakharov, V. V. Stackelberg differential games and problem of time consistency, Intl. Yearbook Game Th. App., 1, Nova Science Publishers, New York, 1993.Google Scholar
  30. [30]
    Zarchan, P. Tactical and Strategic Missile Guidance, American Institute of Aeronautics and Astronautics, Progress in Astronautics and Aeronautics 157, Washington, DC. 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Michael H. Breitner
    • 1
  • Uwe Rettig
    • 2
  • Oskar von Stryk
    • 2
  1. 1.Fachbereich Mathematik und InformatikTechnische Universität ClausthalClausthal-ZellerfeldGermany
  2. 2. Zentrum Mathematik MünchenTechnische UniversitätMünchenGermany

Personalised recommendations