Skip to main content

On Multichain Markov Games

  • Chapter
  • 350 Accesses

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 6))

Abstract

Two-person, zero-sum Markov games with arbitrary (Borel) state and action spaces, unbounded stage costs, and the average cost criterion are considered. The assumption on the transition probabilities implies some n-stage contraction property and lets the Markov chain of the states under a given strategy pair have several periodic recurrence classes, but the recurrence structure of all possible resulting Markov chains is identical. Under this assumption, some results are presented concerning the existence of 8-optimal strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, E., Hordijk, A., and Spieksma, E M. Contraction conditions for average and a-discount optimality in countable state Markov games with unbounded rewards, Math. Oper. Res., 22(3): pp. 588–618, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  2. Blackwell, D., Freedman, D., and Orkin, M. The optimal reward operator in dynamic programming. Ann. Prob. 2, pp. 926–941, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  3. Gubenko, L. G. On multistage stochastic games (in Russian. English summary), Teor Verojatnost. i Mat. Stat. 8, pp. 35–49, 1973.

    MathSciNet  Google Scholar 

  4. Hinderer, K. Foundations of non-stationary dynamic programming with discrete time parameter. Lecture Notes in Operations Research and Mathematical Systems, 33, Springer-Verlag, Berlin, Heidelberg, New York, 1970.

    Book  Google Scholar 

  5. Küenle, H.-U. Stochastische Spiele and Entscheidungsmodelle, Teubner-Texte zur Mathematik, 89. Teubner-Verlag, Leipzig, 1986.

    Google Scholar 

  6. Küenle, H.-U. Stochastic games with complete information and average cost criterion, Advances in Dynamic Games and Applications. J.A. Filar, B. Gaitsgory, K. Mizukamil, eds. (Annals of the International Society of Dynamic Games, Vol. 5) Birkhäuser, Boston, pp. 325–338, 2000.

    Google Scholar 

  7. Küenle, H.-U. Equilibrium strategies in stochastic games with additive cost and transition structure. International Game Theory, Review 1, pp. 131–147, 1999.

    MATH  Google Scholar 

  8. Kurano, M. The existence of a minimum pair of state and policy for Markov decision processes under the hypothesis of Doeblin, SIAM J. Cont. Opt., 27, pp. 296–307, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kurano, M. Average cost Markov decision processes under the hypothesis of Doeblin, Ann. Oper. Res., 29, pp. 375–386, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. Maitra, A. and Sudderth, W. Borel stochastic games with limsup payoff, Ann. Prob., 21, pp. 861–885, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  11. Maitra, A. and Sudderth, W. Finitely additive and measurable stochastic games, Intl. J. Game Th., 22, pp. 201–223, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  12. Maitra, A. and Sudderth, W. Finitely additive stochastic games with Borel measurable payoffs, Intl. J. Game Th., 27, pp. 257–267, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  13. Nowak, A. S. Zero-sum average payoff stochastic games with general state space, Games Econ. Behavior, 7, pp. 221–232, (1994).

    Article  MATH  Google Scholar 

  14. Nowak, A. S. Optimal strategies in a class of zero-sum ergodic stochastic games. Math. Meth. Oper. Res. 50, pp. 300–419, 1999.

    Article  Google Scholar 

  15. Rieder, U. Average optimality in Markov games with general state space, Proc. 3rd Intl. Conf. Approx. Opt., Puebla, 1995.

    Google Scholar 

  16. Shreve, S. E. and Bertsekas, D. P. Alternative theoretical frame-works for finite horizon discrete-time stochastic optimal control, SIAM J. Cont. Opt., 16, pp. 953–978, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  17. Thiemann, J. G. F. Analytic spaces and dynamic programming, CWI Tract, 14, Centrum voor Wiskunde en Informatica, Amsterdam, 1985.

    Google Scholar 

  18. Yushkevich, A. A. Blackwell optimal policies in a Markov decision process with a Borel state space, ZOR—Math. Meth. Oper. Res., 40, pp. 253–288, 1994.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Küenle, HU. (2001). On Multichain Markov Games. In: Altman, E., Pourtallier, O. (eds) Advances in Dynamic Games and Applications. Annals of the International Society of Dynamic Games, vol 6. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0155-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0155-7_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6637-2

  • Online ISBN: 978-1-4612-0155-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics