Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

  • 919 Accesses

Abstract

To integrate control theory in engineering practice, a bridge between real-world systems and abstract mathematical systems theory must be built. For example, applying the control theory to analyze and regulate in the desired manner the energy or information flows, the designer is confronted with the need to find adequate mathematical models of the phenomena and design controllers. Mathematical models can be found using basic physical laws. In particular, in electrical, mechanical, fluid, or thermal systems, the mechanism of storing, dissipating, transforming, and transferring energies are analyzed. We will use the Lagrange equations of motion, as well as the Kirchhoff and Newton laws to illustrate the model developments. The real-world systems integrate many components and subsystems. One can reduce interconnected systems to simple, idealized subsystems (components). However, this idealization, in most cases, is unpractical. For example, one cannot study electric motors without studying devices to be actuated, and to control electric motors, power amplifiers must be integrated as well. That is, electromechanical systems integrate mechanical systems, electromechanical motion devices (actuators and sensors), and power converters. Analyzing power converters, the designer studies switching devices (transistors or thyristors), drivers, circuits, filters, and so forth. The primary objective of this chapter is to illustrate how one can develop mathematical models of dynamic systems using basic principles and laws. Through illustrative examples, differential equations will be found to model dynamic systems. A functional block diagram of the controlled (closed-loop) dynamic systems is illustrated in Figure 2.1.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lyshevski, S.E. (2001). Mathematical Model Developments. In: Control Systems Theory with Engineering Applications. Control Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0153-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0153-3_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6636-5

  • Online ISBN: 978-1-4612-0153-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics