Wavelet Galerkin Methods for Boundary Integral Equations and the Coupling with Finite Element Methods

  • Cristian Pérez
  • Reinhold Schneider
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

Wavelet Galerkin methods for integral operators yield numerically sparse discretizations. This concept can be applied to develop fast and efficient methods for boundary integral equations and solving boundary-value problems for second-order elliptic partial differential equations. We apply these methods to the coupling of finite and boundary element methods to solve an exterior two-dimensional Laplacian. Adopting biorthogonal wavelet matrix compression for the boundary terms with N j degrees of freedom, we show that it fits the optimal convergence rate of the coupling Galerkin methods, while the number of nonzero entries in the corresponding stiffness matrices is considerably smaller than NJ 2.

Keywords

Manifold Nite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Beylkin, R. Coifman, and V. Rokhlin Fast wavelet transforms and numerical algorithmsI Comm. Pure Appl. Math.44 (1991), 141–183.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Y. Meyer.Ondelettes et Opérateurs 2: Opérateurs de Calderón–ZygmundHermann, Paris, 1990.Google Scholar
  3. [3]
    W. Dahmen, S. Prößdorf, and R. Schneider. Multiscale methods for pseudo-differential equations on smooth manifolds.in: Proceedings of the International Conference on Wavelets: Theory Algorithms and Applications(C. K. Chui, L. Montefusco, L. Puccio, eds.), Academic Press, New York, 1994, pp. 385–424.Google Scholar
  4. [4]
    W. Dahmen, S. Prößdorf, and R. Schneider. Wavelet approximation methods for pseudodifferential equationsI:Stability and convergenceMath. Z.215 (1994), 583–620.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    W. Dahmen, S. Prößdorf, and R. Schneider. Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solutionAdv.in Comput. Math.1 (1993), 259–335.MATHGoogle Scholar
  6. [6]
    T. von Petersdorff, and C. Schwab. Wavelet approximation for first kind integral equations on polygonsNumer. Math.74 (1996), 479–516.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    T. von Petersdorff, R. Schneider, and C. Schwab. Multiwavelets for second kind integral equationsSIAM J. Numer. Anal.34 (1997), 2212–2227.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    R. Schneider. Multiskalen-und Wavelet-Matrixkompression: Analysis-basierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme, Habilitationsschrift, Technische Hochschule, Darmstadt, 1995, Teubner, Stuttgart, 1998.Google Scholar
  9. [9]
    A. Rathsfeld. A wavelet algorithm for the solution of the double layer potential equation over polygonal boundariesJ. Integral Equations Appl.7 (1995), 47–97.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    A. Rathsfeld. A wavelet algorithm for the boundary element solution of a geodetic boundary value problem, preprint, No. 225, WIAS, Berlin, 1996.Google Scholar
  11. [11]
    W. Dahmen and R. Schneider. Wavelets on manifolds—Application to boundary integral equations (in preparation).Google Scholar
  12. [12]
    G. C. Hsiao, E. Schnack, and W. Wendland. A hybrid coupled finite-boundary element method in elasticityComput. Methods Appl. Mech. Engrg.173 (1999), 287–316.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    I. Sloan. Error analysis of boundary integral methodsActa Numerica1 (1992), 287–339.MathSciNetGoogle Scholar
  14. [14]
    H. Harbrecht, C. Perez, and R. Schneider. Biorthogonal wavelet approximation for the coupling of FEM–BEM, TU Chemnitz, preprint, 1999.Google Scholar
  15. [15]
    M. Costabel and E. P. Stephan. Coupling of finite element and boundary element methods for an elasto–plastic interface problemSIAM J. Numer. Anal.27 (1988), 1212–1226.MathSciNetCrossRefGoogle Scholar
  16. [16]
    H. Han. A new class of variational formulation for the coupling of finite and boundary element methodsJ. Comput. Math.8 (1990), 223–232.MathSciNetMATHGoogle Scholar
  17. [17]
    C. Carstensen, M. Kuhn, and U. Langer. Fast parallel solvers for symmetric boundary element domain decomposition methodsNumer. Math.79 (1998), 321–347.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    G. Gatica, and G. Hsiao. On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in IR2 Numer. Math.61 (1992), 171–214.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    P. Ciarlet.The Finite Element Method for Elliptic ProblemsNorth-Holland, Amsterdam, 1978.MATHGoogle Scholar
  20. [20]
    V. Quatteroni.Numerical Approximation of Partial Differential EquationsSpringer-Verlag, New York, 1996.Google Scholar
  21. [21]
    M. Costabel. Boundary integral operators on Lipschitz domains-Elementary resultsSIAM J. Math. Anal.19 (1988), 613–626.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    A. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin. Waveletlike bases for the fast solution of second-kind integral equationsSIAM J. Sci. Statist. Comput.14 (1993), 159–184.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    S. Jaffard. Wavelet methods for fast resolution of elliptic equationsSIAM J. Numer. Anal.29 (1992), 965–986.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline-wavelets on the interval—Stability and moment conditions, IGPM-Report 129, RWTH, Aachen, 1996.Google Scholar
  25. [25]
    W. Dahmen. Wavelet and Multiscale Methods for Operator Equations, Acta Numerica, Cambridge University Press, Cambridge, 1997, pp. 55–228.Google Scholar
  26. [26]
    A. Cohen. Wavelet methods in numerical analysis, inHandbook of Numerical Analysis VII(P. G. Ciarlet and J. L. Lions, eds.), Elsevier North-Holland, Amsterdam, 1999.Google Scholar
  27. [27]
    R Oswald.Multilevel Finite Element ApproximationsTeubner Skripten zur Numerik, Teubner, Stuttgart, 1994.Google Scholar
  28. [28]
    A. Cohen, W. Dahmen, and R. de Vore. Adaptive wavelet methods for elliptic operator equations convergence rates, Preprint, IGPM, Nr. 165, RWTH, Aachen, 1998Google Scholar
  29. [29]
    L. Greengard and V. Rohklin. A fast algorithm for particle simulationJ. Comput. Phys.73 (1987), 325–348.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    V. Rokhlin. Rapid solution of integral equations of classical potential theoryJ. Comput. Phys. 60(1983), 187–207.MathSciNetCrossRefGoogle Scholar
  31. [31]
    W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element method by panel clusteringNumer. Math. 54(1989), 463–491.MathSciNetCrossRefGoogle Scholar
  32. [32]
    W. Hackbusch and B. Khoromski. 7-l-Matrices, Preprint, MPI, Leipzig, 1999.Google Scholar
  33. [33]
    A. CohenI.Daubechies, and J. Feauveau. Biorthogonal bases of compactly supportes waveletsComm. Pure Appl. Math. 45(1992), 485–560.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    W. Dahmen and R. Schneider. Composite wavelet basesMath. Comp.(to appear).Google Scholar
  35. [35]
    W. Dahmen and R. Schneider. Wavelets on manifolds, TU Chemnitz, Preprint 1998 SIAM J. Appl. Math.(to appear).Google Scholar
  36. [36]
    C. Canuto, A. Tabacco, and K. Urban. The wavelet element method, to appear inAppl. Comput. Harm. Anal.(to appear).Google Scholar
  37. [37]
    A. Cohen and R. Masson. Wavelet adaptive methods for elliptic equationsSIAM J. Sci. Comp.(to appear).Google Scholar
  38. [38]
    W. Dahmen, A. Kunoth. Multilevel preconditioningNumer. Math.63 (1992), 315–344.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    J. W. Carnicer, W. Dahmen, and J. M. Peña. Local decomposition of refinable spacesAppl. Comp. Harm. Anal. 3(1996), 127–153.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Cristian Pérez
  • Reinhold Schneider

There are no affiliations available

Personalised recommendations