Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1114 Accesses

Abstract

We introduce a new hierarchical modeling of scalar field theories that is based on a set of continuous, piecewise-linear wavelets with Sobolev-orthogonality properties. The set is not a basis, but the difference between the hierarchical models and the realistic models arises entirely from this lack of completeness. Not only is this in elegant contrast to the more familiar hierarchical approximations, but it also raises the possibility of calculating the critical exponent ŋ (which is automatically zero for the familiar hierarchical models).

We call these expansion functions Osiris wavelets and in this chapter we introduce them in two dimensions. Sobolev orthogonality breaks down only between adjacent length scales for these wavelets, and we derive a positive lower bound on the overlap matrix. In the case of the dipole gas we also derive the hierarchical reduction of the renormalization group transformation for this wavelet modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Dyson. Existence of a phase transition in a one-dimensional Ising ferromagnetCommun. Math. Phys.12 (1969), 91–107.

    Article  MathSciNet  Google Scholar 

  2. F. Dyson. Nonexistence of spontaneous magnetization in a one-dimensional Ising ferromagnetCommun. Math. Phys. 12 (1969)212–215

    Article  MathSciNet  Google Scholar 

  3. G. Baker. Ising model with a scaling interactionPhys. Rev. B5(1972), 2622–2633.

    Google Scholar 

  4. K. Wilson. Renormalization group and critical phenomena IIPhys. Rev. B4(1971), 3184–3205.

    Google Scholar 

  5. P. Bleher and Y. Sinai. Investigation of the critical point in models of the type of Dyson’s hierarchical modelsCommun. Math. Phys. 33(1973), 23–42.

    Article  MathSciNet  Google Scholar 

  6. P. Bleher and Y. Sinai. Critical indices for Dyson’s asymptotically hierarchical modelsCommun. Math. Phys. 45(1975), 247–278.

    Article  MathSciNet  Google Scholar 

  7. P. Collet and J. Eckmann.A Renormalization Group Analysis of the Hierarchical Model in Statistical MechanicsSpringer-Verlag, New York, 1978.

    Google Scholar 

  8. K. Gawedzki and A. Kupiainen. Non-Gaussian fixed points of the block spin transformation. Hierarchical model approximationCommun. Math. Phys. 89(1983), 191–220.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Koch and P. Wittwer. A non-trivial renormalization group fixed point for the Dyson—Baker hierarchical modelCommun. Math. Phys. 164(1994), 627–647.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Gallavotti. Some aspects of the renormalization problems in statistical mechanics and quantum field theoryAtti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.(8) XV (1978).

    Google Scholar 

  11. H. Koch and P. Wittwer. A Non-Gaussian renormalization group fixed point for hierarchical scalar lattice field theoriesCommun. Math. Phys. 106(1986), 495–532.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Koch and P. Wittwer. On the renormalization group transformation for scalar hierarchical modelsCommun. Math. Phys. 138(1991), 537–568.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Felder. Renormalization group in local potential approximationCommun. Math. Phys. 111(1987) 101–121.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Brydges and T. Kennedy. Mayer expansion and Burger’s equation, University of Virginia preprint.

    Google Scholar 

  15. G. Battle. A block spin construction of ondelettes, Part II: The QFT ConnectionCommun. Math. Phys. 114(1988), 93–102.

    Article  MathSciNet  Google Scholar 

  16. G. Golner. Calculation of the critical exponent i via renormalization—group recursion formulasPhys. Rev. B8(1973), 339–345.

    Google Scholar 

  17. I. Daubechies. Orthogonal bases of compactly supported waveletsCommun. Pure Appl. Math. 41(1988), 909–996.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Battle.Wavelets and RenormalizationWorld Scientific, Singapore, 1999.

    Book  MATH  Google Scholar 

  19. G. Battle. Phase space localization theorem for ondelettesJ. Math. Phys. 30(1989), 2195–2196

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Gross. (private communication).

    Google Scholar 

  21. Y. Meyer.Ondelettes: Algorithmes et ApplicationsArmand Colin, Paris, 1992.

    MATH  Google Scholar 

  22. J. Frohlich and T. Spencer. On the statistical mechanics of classical Coulomb and dipole gasesJ. Statist. Phys. 24(1981), 617–701.

    Article  MathSciNet  Google Scholar 

  23. K. Gawedzki and A. Kupiainen. Lattice dipole gas and models at long distances: Decay of correlations and scaling limitCommun. Math. Phys. 92(1984), 531–553.

    Article  MathSciNet  Google Scholar 

  24. J. Glimm and A. Jaffe. Critical exponents and elementary particlesCommun. Math. Phys. 52(1977), 203–209.

    Article  MathSciNet  Google Scholar 

  25. J. Bricmont, J. Fontaine, J. Lebowitz, and T. Spencer. Lattice systems with a continuous symmetry IICommun. Math. Phys. 78(1981), 363–372.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Battle, G. (2001). Osiris Wavelets and the Dipole Gas. In: Debnath, L. (eds) Wavelet Transforms and Time-Frequency Signal Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0137-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0137-3_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6629-7

  • Online ISBN: 978-1-4612-0137-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics