Skip to main content

Convergence Rates of Multiscale and Wavelet Expansions

  • Chapter
Wavelet Transforms and Time-Frequency Signal Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We prove several results that characterize the rate at which wavelet and multiresolution expansions converge to functions in a given Sobolev space in the supremum error norm. Some of the results are proved without assuming the existence of a scaling function in the multiresolution analysis. Necessary and sufficient conditions are given for convergence at given rates in terms of behavior of Fourier transforms of the wavelet or scaling function near the origin. Such conditions turn out in special cases to be equivalent to moment and other known determining convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Kelly, M. Kon, and L. Raphael. Pointwise convergence of wavelet expansionsBull. Amer. Math Soc. 30(1994), 87–94.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Kon and L. Raphael. Characterizing convergence rates for multiresolution approximations, inSignal and Image Representation in Combined Spaces(J. Zeevi and R. Coifman, eds.), Academic Press, New York, 1998, pp. 415–437.

    Chapter  Google Scholar 

  3. S. Mallat. Multiresolution approximation and waveletsTrans. Amer. Math. Soc. 315 (1989), 69–88.

    MathSciNet  MATH  Google Scholar 

  4. Y. Meyer. Ondelettes, Hermann, Paris, 1990.

    Google Scholar 

  5. G. Strang and G. Fix. A Fourier analysis of the finite-element variational method, inConstructive Aspects of Functional AnalysisEdizioni Cremonese, Rome, 1973.

    Google Scholar 

  6. G. Walter. Approximation of the delta function by waveletsJ. Approx. Theory 71(1992), 329–343.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. deBoor, C., R. DeVore, and A. Ron. Approximation from shift-invariant subspaces of L2.Trans. Amer. Math. Soc. 341 (1994), 787–806.

    MathSciNet  MATH  Google Scholar 

  8. K. Jetter and D. X. Zhou. Order of linear approximation in shift-invariant spacesConstr. Approx.11 (1995), 423–438.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Daubechies.Ten Lectures on WaveletsCBMS—NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992.

    Book  MATH  Google Scholar 

  10. K. Grochenig. Analyse multichéchelle et bases d’ondelettesC.R. Acad. Sci. Paris Série I (1987), 13–17.

    MathSciNet  Google Scholar 

  11. P. Wojtaszczyk.A Mathematical Introduction to WaveletsCambridge University Press, Cambridge, 1997.

    Book  MATH  Google Scholar 

  12. D. Gurarie and M. A. Kon. Radial bounds for perturbations of elliptic operatorsJ. Funct. Anal.56 (1984), 99–123.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Gurarie and M. A. Kon. Resolvents and regularity properties of elliptic operators, inOperator Theory: Advances and Applications(C. Apostol, ed.), Birkhauser Verlag, Boston, 1983.

    Google Scholar 

  14. W. Sweldens and R. Piessens. Asymptotic error expansions for wavelet approximations of smooth functions, Technical report TW164, Katholieke Universiteit Leuben, 1992.

    Google Scholar 

  15. C. deBoor and A. Ron. Fourier analysis of the approximation power of principal shift-invariant spacesConstr. Approx.8 (1992), 427–462.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Kelly, M. Kon, and L. Raphael. Local convergence of wavelet expansionsJ. Funct. Anal.126 (1994), 102–138.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Strang. Wavelets and dilation equations: A brief introductionSIAM Rev.31 (1989), 614–627.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Stein.Singular Integrals and Differentiability Properties of FunctionsPrinceton University Press, Princeton, NJ, 1970.

    Google Scholar 

  19. P. Auscher. Wavelet bases for L2 with rational dilation factor, inWavelets and Their Applications(Ruskai et al., eds.), Jones and Bartlett, Boston, 1992, pp. 439–452.

    Google Scholar 

  20. E. Stein and G. Weiss.Introduction to Fourier Analysis on Euclidean SpacesPrinceton University Press, Princeton, NJ, 1971.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kon, M.A., Raphael, L.A. (2001). Convergence Rates of Multiscale and Wavelet Expansions. In: Debnath, L. (eds) Wavelet Transforms and Time-Frequency Signal Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0137-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0137-3_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6629-7

  • Online ISBN: 978-1-4612-0137-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics