A First Survey of Gabor Multipliers

  • Hans G. Feichtinger
  • Krzysztof Nowak
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


We describe various basic facts about Gabor multipliers and their continuous analogue which we will call STFT-multipliers. These operators are obtained by going from the signal domain to some transform domain, and applying a pointwise multiplication operator before resynthesis. Although such operators have been in use implicitly for quite some time, this paper appears to be the first systematic mathematical treatment of Gabor multipliers. Indeed, typical time-frequency localization operators, or thresholding algorithms involve simple 0/1-multipliers. The main results of this chapter are of a qualitative nature and describe how the properties of the Gabor multiplier depend on the decay of the multiplier sequence, the time-frequency (TF) concentration properties of the Gabor atom in use, and the time-frequency-lattice. These properties will be described in terms of the mapping properties of the corresponding Gabor multiplier between modulation spaces, or membership in some operator ideal (such as trace-class or Hilbert—Schmidt operator). It is also possible to give relatively precise estimates on behaviour of the sequence of eigenvalues of such operators, especially for the case of tight Gabor frames. We shall also discuss the problem of injectivity of the linear mapping from the multiplier symbol to the operator, recovery of Gabor multipliers from lower symbols, and a related question concerning best approximation of operators (e.g., from the Hilbert—Schmidt class) by Gabor multipliers of a certain type.


Modulation Space Riesz Basis Gabor Frame Hankel Operator Pointwise Multiplication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Berezin. Wick and anti-Wick operator symbols. Math. USSR, Sb. 15, pages 577–606, 1971.CrossRefGoogle Scholar
  2. [2]
    P. Boggiatto. Multi-quasi-elliptic operators and anti-Wick symbols. Ann. Univ.Ferrara, Nouva Ser., Sez. VII 41, Suppl., pages 139–149, 1996.MathSciNetMATHGoogle Scholar
  3. [3]
    H. Bölcskei, F. Hlawatsch, and H.G. Feichtinger. Equivalence of DFT filter banks and Gabor expansions. In SPIE Proc., Wavelet Applications in Signal and Image Processing III, volume 2569, pages 128–139, San Diego (CA), July 1995.Google Scholar
  4. [4]
    H. Bölcskei, F. Hlawatsch, and H.G. Feichtinger. Oversampled FIR and IIR DFT filter banks and Weyl—Heisenberg frames. In Proc. IEEE ICASSP-96, volume 3, pages 1391–1394, Atlanta(GA), 1996.Google Scholar
  5. [5]
    H. Bölcskei, and F. Hlawatsch. Oversampled modulated filter banks. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pages 295–322. Birkhäuser, Boston, 1998.CrossRefGoogle Scholar
  6. [6]
    Christensen and C. Heil. Perturbations of Banach frames and atomic decompositions. Math. Nach., 185:33–47, 1997.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    L.A. Coburn, The Measure Algebra of the Heisenberg Group, Journal of Functional Analysis 161, 509–525, 1999.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    L.A. Coburn, On the Berezin-Toeplitz calculus, Proc. Amer. Math. Soc. 129:11, 3331–3338, 2001.Google Scholar
  9. [9]
    Z. Cvetkovic. Oversampled modulated filter banks and tight Gabor frames in £2(Z). In Proc. ICASSP-95, 1456–1459, Detroit (MI), 1995.Google Scholar
  10. [10]
    Z. Cvetkovic and M. Vetterli. Oversampled filter banks. IEEE Trans. Signal Processing, 46(5):1245–1255, May 1998.MathSciNetGoogle Scholar
  11. [[11]
    I. Daubechies. Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inform. Theory, 34/4, July 1988.Google Scholar
  12. [12]
    I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Info. Theory, 36:961–1005, 1990.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Series in Applied Math. SIAM, 1992.Google Scholar
  14. [14]
    I. Daubechies and T. Paul. Time-frequency localization operators: A geometric phase space approach II. The use of dilations and translations. Inverse Problems, 4:661–680, 1988.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    M. Dörfler, H.G. Feichtinger, and K. Gröchenig: Compactness criteria in function spaces, Coll. Math., to appear.Google Scholar
  16. [16]
    F. DeMari, H.G. Feichtinger and K. Nowak. Uniform eigenvalue estimates for time-frequency localization operators. To appear in the Journal of London Mathematical Society.Google Scholar
  17. [17]
    J. Du and M.W. Wong. A product formula for localization operators. Bull. Korean Math. Soc., 37(1):77–84, 2000.MathSciNetMATHGoogle Scholar
  18. [18]
    J. Du and M.W. Wong. Gaussian functions and Daubechies operators. Integral Equations Oper. Theory, 38(1):1–8, 2000.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    J. Du and M.W. Wong. Gaussian series and Daubechies operators. Appl. Anal., 76(1–2):83–91, 2000.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    J. Du and M.W. Wong. Traces of localization operators. C. R. Math. Acad. Sci., Soc. R. Can., 22(2):92–96, 2000.MathSciNetMATHGoogle Scholar
  21. [21]
    S. Farkash and S. Raz. Time variant filtering via the Gabor representation. In Signal Processing V, pages 509–512, 1990.Google Scholar
  22. [22]
    S. Farkash and S. Raz. Linear systems in Gabor time-frequency space. Trans. IEEE Sign.Proc., 42:611–617, 1994.CrossRefGoogle Scholar
  23. [23]
    H. G. Feichtinger. Compactness in translation invariant Banach spaces of distributions and compact multipliers. J. Math.Anal.Appl., 102:289–327, 1984.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    H. G. Feichtinger and K. Gröchenig. A unified approach to atomic characterizations via integrable group representations. Lect.Notes in Math., 1302:52–73, 1988.CrossRefGoogle Scholar
  25. [25]
    H.G. Feichtinger. Atomic characterizations of modulation spaces through Gabor-type representations. In Proc. Conf. Constructive Function Theory, Rocky Mountain J. Math. 19:113–126, 1989.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions, I. J.Funct.Anal., 86:307–340, 1989.MATHCrossRefGoogle Scholar
  27. [27]
    H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions, II. Monatsh. f. Math., 108:129–148, 1989.MATHCrossRefGoogle Scholar
  28. [28]
    H. G. Feichtinger, K. Gröchenig, and D. Walnut. Wilson bases and modulation spaces. Math. Nachr., 155:7–17, 1992.Google Scholar
  29. [29]
    H.G. Feichtinger. An elementary approach to the generalized Fourier transform. In T. Rassias, editor, Topics in Mathematical Analysis, pages 246–272. World Sci.Publ., 1988. volume in the honour of Cauchy, 200’ anniv.Google Scholar
  30. [30]
    H. G. Feichtinger and T. Strohmer, editors. Gabor Analysis and Algorithms: Theory and Applications. Birkhäuser, Boston, 1998.Google Scholar
  31. [31]
    H. G. Feichtinger and W. Kozek. Quantization of TF-Lattice invariant operators on elementary LCA groups. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pg. 233–266. Birkhäuser, Boston, 1998.Google Scholar
  32. [32]
    H. G. Feichtinger and G. Zimmermann. A space of test functions for Gabor analysis. In H.G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pages 123–170. Birkhäuser, Boston, 1998.Google Scholar
  33. [33]
    H.G. Feichtinger and A.J.E.M. Janssen. Validity of WH-frame bound conditions depends on lattice parameters. Appl. Comput. Harm. Anal., 8(1):104–112, 2000.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    [] H. G. Feichtinger. Gabor multipliers and spline-type spaces over LCA groups, In “Wavelet Analysis: Twenty Years’ Developments”, (D. X. Zhou, ed.) World Scientific Press, Singapore, 2002, to appear.Google Scholar
  35. [35]
    H. G. Feichtinger and M. Dörfler. Eigenvalue analysis of time-frequency localization operators, in preparation, 2002.Google Scholar
  36. [36]
    H. G. Feichtinger and M. Hampejs. Best approximation of matrices by Gabor multipliers, preprint, 2002.Google Scholar
  37. [37]
    H. G. Feichtinger and N. Kaiblinger. Varying the time-frequency lattice of Gabor frames. 2002, submitted.Google Scholar
  38. [38]
    H. G. Feichtinger and K. Nowak. A Szegö-type theorem for GaborToeplitz localization operators. Michigan Math. J.,49:13–21,2001MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    P. Flandrin, Maximal energy concentration in a time-frequency domain, ICASSP 88, 2176–2179, (1988)Google Scholar
  40. [40]
    G.B. Folland. Harmonic Analysis in Phase Space. Annals of Math. Studies. Princeton Univ. Press, Princeton (NJ), 1989.Google Scholar
  41. [41]
    M. Frazier and B. Jawerth. A discrete transform and decompositions of distribution spaces. J. Func. Anal., 93:34–170, 1990.MathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    K. Gröchenig. An uncertainty principle related to the Poisson summation formula. Studia Math. 121(1):87–104, 1996.MathSciNetMATHGoogle Scholar
  43. [43]
    K. Gröchenig. Personal communication.Google Scholar
  44. [44]
    K. Gröchenig. Foundations of Time-Frequency Analysis. Birkhäuser, Boston, 2001.Google Scholar
  45. [45]
    [] K. Gröchenig and M. Leinert: Wiener’s Lemma for twisted convolution and Gabor frames, 2001, submitted.Google Scholar
  46. [46]
    Z. He and M.W. Wong. Localization operators associated to square integrable group representations. Panam. Math. J., 6(1):93–104, 1996.MathSciNetMATHGoogle Scholar
  47. [47]
    C. Heil, J. Ramanathan, and P. Topiwala: Asymptotic singular value decay of time-frequency localization operators. In SPIE Proc., Mathematical Imaging: Wavelet Applications in Signal and Image Processing II, volume 2303, pages 15–24, Bellingham, WA, 1994.Google Scholar
  48. [48]
    C. Heil, J. Ramanathan, and P. Topiwala. Singular values of compact pseudodifferential operators. J. Funct. Anal. 150 (1997), 426–452.MathSciNetMATHCrossRefGoogle Scholar
  49. [49]
    C. Heil, J. Ramanathan, and P. Topiwala. Linear independence of time-frequency translates. Proc. Amer. Math. Soc., 124:2787–2795, 1996.MathSciNetMATHCrossRefGoogle Scholar
  50. [50]
    F. Hlawatsch and W. Kozek. Time-frequency weighting and displacement effects in linear time-varying systems. In Proc. IEEE ISCAS-92, pages 1455–1458, 1992.Google Scholar
  51. [51]
    F. Hlawatsch and W. Kozek. Time-frequency projection filters and TF signal expansions. IEEE Trans. Signal Proc., 42(12): 3321–3334, 1994.CrossRefGoogle Scholar
  52. [52]
    F. Hlawatsch, W. Krattenthaler, and W. Kozek. Time-frequency subspaces and their applications to time-varying filtering. In Proc. IEEE ICASSP-90, pages 1607–1610, Albuquerque (NM), Apr. 1990.Google Scholar
  53. [53]
    F. Hlawatsch, G. Matz, H. Kirchauer, and W. Kozek. Time-frequency formulation, design, and implementation of time-varying optimal filters for signal estimation. IEEE Trans. Signal Processing, vol. 48, pp. 1417–1432, May 2000.MATHCrossRefGoogle Scholar
  54. [54]
    F. Hlawatsch and G. Matz, “Linear time-frequency filters,” in Time-Frequency Signal Analysis and Processing (B. Boashash, ed.), Englewood Cliffs (NJ): Prentice Hall, 2002.Google Scholar
  55. [55]
    R.B. Holmes. Mathematical foundations of signal processing. SIAM Rev., 21(3):361–388, 1979.MathSciNetMATHCrossRefGoogle Scholar
  56. [56]
    A.J.E.M. Janssen. Duality and biorthogonality for Weyl—Heisenberg frames. J. Four. Anal. Appl., 1(4):403–436, 1995.MATHCrossRefGoogle Scholar
  57. [57]
    A.J.E.M. Janssen. From continuous to discrete Weyl—Heisenberg frames through sampling. J. Fourier Anal. Appl., 3(5):583–596, 1997.MathSciNetMATHCrossRefGoogle Scholar
  58. [58]
    A. J. E. M. Janssen and T. Strohmer Characterization and computation of canonical tight windows for Gabor frames. J. Fourier Anal. Appl., 8:1, 1–28, 2002.Google Scholar
  59. [59]
    W. Kozek. On the generalized weyl correspondence and its application to time-frequency analysis of linear systems. In IEEE Int. Symp. on Time-Frequency and Time-Scale Analysis, pg. 167–170, Victoria, Canada, Oct. 1992.CrossRefGoogle Scholar
  60. [60]
    W. Kozek. Time-frequency signal processing based on the WignerWeyl-framework. Signal Processing, 29, 77–92, 1992.MATHCrossRefGoogle Scholar
  61. [61]
    M.L. Kramer. Improved time-frequency filtering using an STFT analysis-modification-synthesis method. In Proc. IEEE-SP Internat. Symp. on Time-Frequency and Time-Scale Analysis, pages 264–267, Philadelphia/PA, October 1994.CrossRefGoogle Scholar
  62. [62]
    H.J. Landau, H. Widom, Eigenvalue distribution of time and frequency limiting, J. Math. Anal. Appl. 77, 469–481, (1980).MathSciNetMATHCrossRefGoogle Scholar
  63. [63]
    G.F. Margrave and M.P. Lamoureux. Gabor Deconvolution: The Annual Research Report of the Consortium for Research in Elastic Wave Exploration Seismology, CREWES Res. Report, Volume 13 (2001).Google Scholar
  64. [64]
    G. Matz and F. Hlawatsch. Time-frequency transfer function calculus (symbolic calculus) of linear time-varying systems (linear operators) based on a generalized underspread theory. J. Math. Phys., Special Issue on Wavelet and Time-Frequency Analysis, vol. 39, pp. 4041–4071, Aug. 1998.MathSciNetMATHGoogle Scholar
  65. [65]
    G. Matz and F. Hlawatsch, Linear Time-Frequency Filters: Online Algorithms and Applications. In: Applications in Time-Frequency Signal Processing, A. Papandreou-Suppappola, Ed., Boca Raton (FL): CRC Press, 2002.Google Scholar
  66. [66]
    [] M. Niedzwiecki. Identification of time-varying systems usings combined parameter estimation and filtering. IEEE Trans. Acoust. Speech Sig. Proc., 38:679–686, 1990.MathSciNetMATHCrossRefGoogle Scholar
  67. [67]
    A. Pietsch. Eigenvalues of Integral Operators II, Math. Ann. 262 (1983), 343–376.MathSciNetMATHCrossRefGoogle Scholar
  68. [68]
    S. Qian and D. Chen. Joint Time-Frequency Analysis: Method and Application. Prentice Hall, Englewood Cliffs, NJ, 1996.Google Scholar
  69. [69]
    J. Ramanathan and P. Topiwala. Time-frequency localization operators of Cohen’s class. In J. Byrnes et. al., editor, Wavelets and their applications (Il Ciocco, 1992), pages 313–324. Kluwer Acad. Publ., Dordrecht, 1994.Google Scholar
  70. [70]
    J. Ramanathan and P. Topiwala. Time-frequency localization via the Weyl correspondence. SIAM J. Math. Anal., 24/5:1378–1393, 1993.MathSciNetMATHCrossRefGoogle Scholar
  71. [71]
    J. Ramanathan and P. Topiwala. Time-frequency localization and the spectrogram. Appl. Comp. Harm. Anal., 1(2):209–215, 1994.MathSciNetMATHCrossRefGoogle Scholar
  72. [72]
    R. Rochberg, A correspondence principle for Toeplitz and Calder¨®nToeplitz operators, Israel Math. Conf. Proc. 5, 229–243, (1992).MathSciNetGoogle Scholar
  73. [73]
    T. Strohmer. Approximation of dual Gabor frames, window decay, and wireless communications. Appl. Comput. Harm. Anal., 11(2):243–262,2001.MathSciNetMATHCrossRefGoogle Scholar
  74. [74]
    A. Teuner and B.J. Hosticka. Adaptive filter for two-dimensional Gabor transformation and its implementation. IEE Proceedings-1, 140/1:2–6, 1993.Google Scholar
  75. [75]
    R. Vio and W. Wamsteker. Joint Time-Frequency Analysis: a tool for exploratory signal analysis and filtering of non-stationary time series, Astronomy and Astrophysics, 338: 1124–1138, 2002.CrossRefGoogle Scholar
  76. [76]
    D.F. Walnut. Continuity properties of the Gabor frame operator. J. Math. Anal. Appl., 165(2):479–504, 1992.MathSciNetMATHCrossRefGoogle Scholar
  77. [77]
    M. Wang and Z. Bao. Modified short-time Fourier transform. Opt. Engrg., 34(5):1333–1337, 1995.Google Scholar
  78. [78]
    H. Widom Asymptotic expansions for pseudodifferential operators on bounded domains, Lecture Notes in Math., 1152, Springer-Verlag, Berlin, 1985Google Scholar
  79. [79]
    R. Young. An Introduction to Non-harmonic Fourier Series. Acad. Press, New York, 1980.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Hans G. Feichtinger
  • Krzysztof Nowak

There are no affiliations available

Personalised recommendations