Skip to main content

Localization Properties and Wavelet-Like Orthonormal Bases for the Lowest Landau Level

  • Chapter

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

As an illustration of the phase space localization problem of quantum mechanical systems, we study a two-dimensional electron gas in a magnetic field, such as encountered in the Fractional Quantum Hall Effect (FQHE). We discuss a general procedure for constructing an orthonormal basis for the lowest Landau level (as well as for the other Landau levels), starting from an arbitrary orthonormal basis in L 2(ℝ). After some remarks concerning localization properties of the wave functions of any orthonormal basis in the Landau levels, we discuss in detail some relevant examples stemming from wavelet analysis like the Haar, the Littlewood—Paley, the Journé and the splines bases. We also propose a toy model, which indicates how the use of wavelets in the analysis of the FQHE may help in the search for the correct ground state of the system. Finally, we exhibit an intriguing equivalence between FQHE states generated by the so-called magnetic translations and vectors of an orthonormal basis derived from an arbitrary multiresolution analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.T. Ali, J-P. Antoine, and J-P. GazeauCoherent States Wavelets and Their Generalizations. Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  2. J-P. Antoine, Ph. Antoine, and B. Piraux, Wavelets in atomic physics and in solid state physics, inWavelets in Physics pp. 299–338. J.C. van den Berg (ed.), Cambridge Univ. Press, Cambridge, 1999.

    Google Scholar 

  3. J-P. Antoine and F. Bagarello, Wavelet-like orthonormal bases for the lowest Landau levelJ. Phys. A: Math. Gen.27: 2471–2481, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  4. J-P. Antoine, A. Coron, and J-M. Dereppe, Water peak suppression: Time-frequency vs. time-scale approachJ. Magn. Reson.144: 189194, 2000.

    Google Scholar 

  5. M. Abramowitz and I.A. StegunHandbook of Mathematical Functions.Dover, New York, 1965.

    Google Scholar 

  6. D. Barache, J-P. Antoine, and J-M. Dereppe, The continuous wavelet transform, a tool for NMR spectroscopyJ. Magn. Reson.128: 1–11, 1997.

    Article  Google Scholar 

  7. F. Bagarello, More wavelet-like orthonormal bases for the lowest Landau level: Some considerationsJ. Phys. A: Math. Gen.27: 5583–5597, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Bagarello, Applications of wavelets in quantum mechanics: A pedagogical exampleJ. Phys. A: Math. Gen.29: 565–576, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Bagarello, Multi-resolution analysis and Fractional Quantum Hall Effect: An equivalence result J. Math. Phys.42: 5115–5129, 2001.

    Article  MathSciNet  Google Scholar 

  10. G. Battle, Phase space localization theorem for ondelettesJ. Math. Phys.30: 2195–2196, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Bacry, A. Grossmann, and J. Zak, Proof of the completeness of lattice states inkqrepresentation,Phys. Rev. B, 12: 1118–1120, 1975.

    Article  Google Scholar 

  12. [12] J.J. Benedetto, C. Heil, and D.F. Walnut, Gabor systems and the Balian—Low Theorem,in [22], Chap. 2, pp. 85–122.

    Google Scholar 

  13. B.H. Bransden and C.J. JoachainPhysics of Atoms and Molecules.Longman, London and New York, 1983.

    Google Scholar 

  14. F. Bagarello, G. Morchio, and F. Strocchi, Quantum corrections to the Wigner crystal: A Hartree—Fock expansionPhys. Rev. B48: 53065314, 1993.

    Google Scholar 

  15. M. Boon, Coherent states and Pippard networks, inGroup-Theoretical Methods in Physics (Proc. Nijmegen 1975) pp. 282–288. Lecture Notes Phys. 50, A. Janner, T. Janssen, M. Boon (eds.), Springer-Verlag, Berlin, Heidelberg, 1976.

    Google Scholar 

  16. V. Bargmann, P. Butera, L. Girardello, and J.R. Klauder, On the completeness of coherent statesReports Math. Phys.2: 221–228, 1971.

    Article  MathSciNet  Google Scholar 

  17. C.K. ChuiAn Introduction to Wavelets.Academic Press, New York and London, 1992.

    Google Scholar 

  18. I. DaubechiesTen Lectures on Wavelets.SIAM, Philadelphia, 1992.

    Google Scholar 

  19. I. Dana and J. Zak, Adams representation and localization in a magnetic fieldPhys. Rev. B28: 811–820, 1983.

    Article  Google Scholar 

  20. G. Fano, Comments on the mathematical structure of the Laughlin wave function for the anomalous quantum Hall effect. A pedagogical exposition. Lectures given at the International School for Advanced Studies, Trieste, May 1984.

    Google Scholar 

  21. R. Ferrari, Two-dimensional electrons in a strong magnetic field: A basis for single particle statesPhys. Rev. B42: 4598–4609, 1990.

    Article  Google Scholar 

  22. H.G. Feichtinger and T. Strohmer (eds.)Gabor Analysis and Algorithms — Theory and Applications.Birkhäuser, Boston-Basel-Berlin, 1998.

    MATH  Google Scholar 

  23. D. Gabor, Theory of communicationJ. Inst. Electr. Eng. (London)93: 429–457, 1946.

    Google Scholar 

  24. M. Greiter and I.A. McDonald, Hierarchy of quantized Hall states in double-layer electron systemsNucl. Phys. B [FS]410: 521–534, 1993.

    Article  Google Scholar 

  25. I.S. Gradshteyn and I.M. RyzhikTables of Integrals Series and Products. Academic Press, New York and London, 1980.

    Google Scholar 

  26. F.D.M. Haldane, Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid statesPhys. Rev. Lett.51: 605–608, 1983.

    Article  MathSciNet  Google Scholar 

  27. G. KlambauerReal Analysis.Elsevier, Amsterdam, 1973.

    MATH  Google Scholar 

  28. R.B. Laughlin, Quantized motion of three two-dimensional electrons in a strong magnetic fieldPhys. Rev. B27: 3383–3389, 1983.

    Article  Google Scholar 

  29. G. MorandiQuantum Hall Effect.Bibliopolis, Napoli, 1988.

    Google Scholar 

  30. G. MorandiThe Role of Topology in Classical and Quantum Physics.Lecture Notes Phys. m7, Springer-Verlag, Berlin, Heidelberg, 1992.

    Google Scholar 

  31. Jean-Pierre Antoine and Fabio Bagarello

    Google Scholar 

  32. M. Moshinsky and C. Quesne, Linear canonical transformations and their unitary representationsJ. Math. Phys.12: 1772–1780, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Maki and X. Zotos, Static and dynamic properties of a two-dimensional Wigner crystal in a strong magnetic fieldPhys. Rev. B28: 4349–4356, 1983.

    Article  Google Scholar 

  34. A.M. Perelomov, On the completeness of a system of coherent statesTheor. Math. Phys.6: 156–164, 1971.

    Article  MathSciNet  Google Scholar 

  35. A.M. PerelomovGeneralized Coherent States and Their Applications.Springer-Verlag, Berlin, Heidelberg, 1986.

    Google Scholar 

  36. D. Yoshioka and P.A. Lee, Ground-state energy of a two-dimensional charge-density-wave state in a strong magnetic fieldPhys. Rev. B27: 4986–4996, 1983.

    Article  Google Scholar 

  37. J. Zak, Dynamics of electrons in solids in external fieldsPhys. Rev.168: 686–695, 1968.

    Article  Google Scholar 

  38. J. Zak, The kg-representation in the dynamics of electrons in solidsSolid State Physics27: 1–62, 1972.

    Article  Google Scholar 

  39. J. Zak, Orthonormal sets of localized functions for a Landau levelJ. Math. Phys.39: 4195–4200, 1998.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antoine, JP., Bagarello, F. (2003). Localization Properties and Wavelet-Like Orthonormal Bases for the Lowest Landau Level. In: Feichtinger, H.G., Strohmer, T. (eds) Advances in Gabor Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0133-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0133-5_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6627-3

  • Online ISBN: 978-1-4612-0133-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics