Skip to main content

Part of the book series: Progress in Probability ((PRPR,volume 50))

Abstract

We give a short survey of results related to the maximum entropy method. In this article we use the large deviations approach rather than the more direct convex analytical one. Indeed, the proposed applications are naturally stated in terms of large random particle systems, namely, the existence and construction problems for Schrödinger’s bridges and Nelson’s diffusion processes. These problems arise from probabilistic approaches to quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maximum Entropy and Bayesian Methods, Proceedings of the 11th International Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis, eds. C. R. Smith, G. J. Erickson and P. O. Neudorfer, Seattle, Kluwer, 1991.

    Google Scholar 

  2. S. Bernstein, Sur les liaisons entre les grandeurs aléatoires Vehr. des intern. Mathematikerkongr., Zürich 1932, Band 1.

    Google Scholar 

  3. A. Beurling, An automorphism of product measures, Ann. Math., 72 (1960), 189–200.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. M. Borwein and A. S. Lewis, Partially-finite programming in L1 and the existence of maximum entropy estimates SIAM J. Optim., 3 (1993), 248–267.

    MathSciNet  MATH  Google Scholar 

  5. P. Cattiaux and C. Léonard, Minimization of the Kullback information of diffusion processes, Ann. Inst. Henri Poincaré, 30 (1994), 83–132.

    MATH  Google Scholar 

  6. P. Cattiaux and C. Léonard, Large deviations and Nelson processes, Forum Math., 7 (1995), 95–115.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Carlen, Conservative diffusions, Comm. Math. Phys., 94 (1984), 293–315.

    Article  MathSciNet  MATH  Google Scholar 

  8. A.B. Cruzeiro, L. Wu, J.C. Zambrini, Bernstein processes associated with a Markov process. Stochastic Analysis and Mathematical Physics, (Santiago 98, Ed. R. Rebolledo). Trends in Math., Birkhaüser, 2000, 41–72.

    Chapter  Google Scholar 

  9. A.B.Cruzeiro, J.C. Zambrini, Malliavin calculus and euclidean quantum mechanics, I., J. Funct. Anal, 96:1 (1991), 62–95.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Csiszár, I-Divergence Geometry of Probability Distributions and Minimization Problems, Ann. Probab., 3(1975), 146–158.

    Article  MATH  Google Scholar 

  11. I. Csiszár, Sanov property, generalized I-projection and a conditional limit theorem, Ann. Probab., 12(1984), 768–793.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Csiszár, F. Gamboa and E. Gassiat, MEM pixel correlated solutions for generalized moment and interpolation problems, IEEE Trans. Inform. Theory., 45(Nov. 1999), 2253–2270.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Second edition, Springer-Verlag, 1998.

    Book  MATH  Google Scholar 

  14. P. Eischelsbacher and U. Schmock, Large and moderate deviations of products of empirical measures aud U-empirical processes in strong topologies, preprint, 1997.

    Google Scholar 

  15. P. Eischelsbacher and U. Schmock, Exponential approximations in completely regular topological spaces and extensions of Sanov’s theorem, Stochastic Processes and their Applications, 11 (1998), 233–251.

    Article  Google Scholar 

  16. H. Föllmer, Random Fields and Diffusion Processes, Cours à l’Ecole d’Été de Probabilités de Saint-Flour, Lecture Notes in Math. 1362, Springer Verlag, 1988.

    Google Scholar 

  17. R. Fortet, Résolution d’un système d’équations de M. Schrödinger, J. Math. Pures. Appl., IX(1940), 83–105.

    MathSciNet  Google Scholar 

  18. C. Léonard, Minimizers of energy functionals, to appear in Acta Mathematica Hungarica.

    Google Scholar 

  19. C. Léonard, Minimization of energy functionals applied to some inverse problems, to appear in Journal of Applied Mathematics and Optimization.

    Google Scholar 

  20. C. Léonard, Minimizers of energy functionals under not very integrable constraints, preprint Ecole Polytechnique, CMAP, 2000.

    Google Scholar 

  21. C. Léonard and J. Najim, An extension of Sanov’s theorem. Application to the Gibbs conditioning principle, preprint Ecole Polytechnique, CMAP, 2000.

    Google Scholar 

  22. F. Liese and I. Vajda, Convex Statistical Distances, Leipzig, B.G. Teubner, 1987.

    Google Scholar 

  23. E. Nelson, Quantum Fluctuations, Princeton Series in Physics, Princeton University Press, 1985.

    Google Scholar 

  24. L. Rüschendorf, On the minimum discrimination information theorem, Statist. Decisions, Supplementary volume 1, 1984.

    Google Scholar 

  25. A. Schied, Cramér’s condition and Sanov’s theorem, Statitics and Probability Letters, 39(1998), 55–60.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Schrödinger, Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. Ann. Inst. Henri Poincaré, 2(1932), 269–310.

    Google Scholar 

  27. D.W. Stroock and O. Zeitouni, Microcanonical distributions, Gibbs states, and the equivalence of ensembles, in: Festchrift in honour of F. Spitzer, R. Durrett and H. Kesten, eds., Springer Science+Business Media New York, 1991, 399–424.

    Google Scholar 

  28. M. Teboulle and I. Vajda, Convergence of Best ø-Entropy Estimates, IEEE Trans. Inform. Theory, 9(Jan. 1993), 297–301.

    MathSciNet  Google Scholar 

  29. L. Wu, Uniqueness of Nelson’s diffusions, Probab. Th. and Rel. Fields, 114 (1999), 549–585.

    Article  MATH  Google Scholar 

  30. J.C. Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Phys., 9(1986), 2307–2330.

    Article  MathSciNet  Google Scholar 

  31. W.A. Zheng, Tightness results for laws of diffusion processes, application to stochastic mechanics, Ann. Inst. Henri Poincaré, B 21(1985), 103–124.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Léonard, C. (2001). Some Results on Entropic Projections. In: Cruzeiro, A.B., Zambrini, JC. (eds) Stochastic Analysis and Mathematical Physics. Progress in Probability, vol 50. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0127-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0127-4_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6624-2

  • Online ISBN: 978-1-4612-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics