Advertisement

Enhancing the Enzymatic Hydrolysis of Cellulosic Materials Using Simultaneous Ball Milling

  • Ursula Mais
  • Ali R. Esteghlalian
  • John N. Saddler
  • Shawn D. Mansfield
Chapter
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

One of the limiting factors restricting the effective and efficient bioconversion of softwood-derived lignocellulosic residues is the recalcitrance of the substrate following pretreatment. Consequently, the ensuing enzymatic process requires relatively high enzyme loadings to produce monomeric carbohydrates that are readily fermentable by ethanologenic microorganisms. In an attempt to circumvent the need for larger enzyme loadings, a simultaneous physical and enzymatic hydrolysis treatment was evaluated. A ball-mill reactor was used as the digestion vessel, and the extent and rate of hydrolysis were monitored. Concurrently, enzyme adsorption profiles and the rate of conversion during the course of hydrolysis were monitored. α-Cellulose, employed as a model substrate, and SO2-impregnated steam-exploded Douglas-fir wood chips were assessed as the cellulosic substrates. The softwood-derived substrate was further posttreated with water and hot alkaline hydrogen peroxide to remove >90% of the original lignin. Experiments at different reaction conditions were evaluated, including substrate concentration, enzyme loading, reaction volumes, and number of ball beads employed during mechanical milling. It was apparent that the best conditions for the enzymatic hydrolysis of α-cellulose were attained using a higher number of beads, while the presence of air-liquid interface did not seem to affect the rate of saccharification. Similarly, when employing the lignocellulosic substrate, up to 100% hydrolysis could be achieved with a minimum enzyme loading (10 filter paper units/g of cellulose), at lower substrate concentrations and with a greater number of reaction beads during milling. It was apparent that the combined strategy of simultaneous ball milling and enzymatic hydrolysis could improve the rate of saccharification and/or reduce the enzyme loading required to attain total hydrolysis of the carbohydrate moieties.

Index Entries

Cellulose hydrolysis cellulose enzyme adsorption ball mill reactor softwood enzymatic hydrolysis steam explosion bioconversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wyman, C. E. (1996), Handbook on Bioethanol—Production and Utilization, Taylor and Francis, Washington, DC.Google Scholar
  2. 2.
    Boussaid, A. and Saddler, J. N. (1999), Enzyme Microb. Technol. 24, 138–143.CrossRefGoogle Scholar
  3. 3.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1992), Appl. Biochem. Biotechnol. 34–35, 37–47.CrossRefGoogle Scholar
  4. 4.
    Mansfield, S. D., Mooney, C., and Saddler, J. N. (1999), Biotechnol. Prog. 15, 804–816.PubMedCrossRefGoogle Scholar
  5. 5.
    Bungay, H. (1992), Enzyme Microb. Technol. 14, 501–507.CrossRefGoogle Scholar
  6. 6.
    Saddler, J. N., Brownell, H. H., Clermont, L. P. and Levitn, N. (1982), Biotechnol. Bioeng. 24, 1389–1402.PubMedCrossRefGoogle Scholar
  7. 7.
    Eklund, R., Glabe, M., and Zacchi, G. (1990), Enzyme Microb. Technol. 12, 225–228.CrossRefGoogle Scholar
  8. 8.
    Gregg, D. and Saddler, J. N. (1996), Biotechnol. Bioeng. 51, 375–383.PubMedCrossRefGoogle Scholar
  9. 9.
    Ryu, S. K. and Lee, J. M. (1983), Biotechnol. Bioeng. 25, 53–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Kelsey, R. G. and Shafizadeh, F. (1980), Biotechnol. Bioeng. 22, 1025–1036.CrossRefGoogle Scholar
  11. 11.
    Maekawa, E. (1996), Wood Sci. Technol. 30, 133–139.CrossRefGoogle Scholar
  12. 12.
    Wu, M. M., Chang, K., Gregg, D. J., Boussaid, A., Beatson, R. P. and Saddler, J. N. (1999), Appl. Biochem. Biotechnol. 77–79, 47–54.CrossRefGoogle Scholar
  13. 13.
    Henley, R. G., Yang, R. Y. K. and Greenfield, P. F. (1980), Enzyme Microb. Technol. 2, 206–208.CrossRefGoogle Scholar
  14. 14.
    Katz, M. and Reese, E. T. (1968), Appl. Microbiol. 16, 419.PubMedGoogle Scholar
  15. 15.
    Millett, M. A., Baker, A. J., and Satter, L. D. (1976), Biotechnol. Bioeng. Symp. 6, 125.PubMedGoogle Scholar
  16. 16.
    Sidiras, D. K. and Koukios, E. G. (1989), Biomass 19, 289–306.CrossRefGoogle Scholar
  17. 17.
    Furcht, P. W. and Siila, H. (1990), Biotechnol. Bioeng. 35, 630–645.PubMedCrossRefGoogle Scholar
  18. 18.
    Ghose, T. K. (1969), Biotechnol Bioeng. 11, 239–261.CrossRefGoogle Scholar
  19. 19.
    Neilson, M. J., Kelsey, R. G., and Shafizadeh, F. (1982), Biotechnol. Bioeng. 24, 293–304.PubMedCrossRefGoogle Scholar
  20. 20.
    Jones, E. O. and Lee, J. M. (1988), Biotechnol. Bioeng. 31, 34–40.CrossRefGoogle Scholar
  21. 21.
    Nakao, K., Funkunaga, K., Yasuda, Y., Tejima, Y., and Kimura, M. (1991), Kagaku Kogaku Ronbunshu 17, 882–889.CrossRefGoogle Scholar
  22. 22.
    Sinitsyn, A. P., Gusakov, A. V., Davydkin, I. Y., Davydkin, V. Y., and Protas, O. V. (1993), Biotechnol. Lett. 15, 283–288.CrossRefGoogle Scholar
  23. 23.
    Mackie, K. L., Brownell, H. H., West, K. L., and Saddler, J. N. (1985), J. Wood Chem. Technol. 5, 405–425.CrossRefGoogle Scholar
  24. 24.
    Boussaid, A., Esteghlalian, A. R., Gregg, D. J., Lee, K. H., and Saddler. J. N. (2000), Appl. Biochem. Biotechnol. 84–86, 693–705.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang, B., Boussaid, A., Mansfield, S. D. and Saddler, J. N. (2002), Biotechnol. Bioeng. in press.Google Scholar
  26. 26.
    Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.CrossRefGoogle Scholar
  27. 27.
    TAPPI, Technical Association of the Pulp and Paper Industry (1998), Standard Methods, T-222 om-98, Atlanta, GA.Google Scholar
  28. 28.
    TAPPI, Technical Association of the Pulp and Paper Industry (1991), Useful Methods, UM-250, Atlanta, GA, pp. 47,48.Google Scholar
  29. 29.
    Breuil, C., Chan, M., Gilbert, M., and Saddler, J. N. (1992), Bioresour. Technol. 39, 139–142.CrossRefGoogle Scholar
  30. 30.
    Reese, E. Y. and Ryu, D. Y. (1980), Enzyme Microb. Technol. 2, 239–240.CrossRefGoogle Scholar
  31. 31.
    Bader, J., Bellgardt, K., Singh, A., Kumar, P., and Shugerl, K. (1992), Bioprocess. Eng. 7, 235–240.CrossRefGoogle Scholar
  32. 32.
    Medve, J., Karlsson, J., Lee, D., and Tjerneld, F. (1998), Biotechnol. Bioeng. 59, 621–634.PubMedCrossRefGoogle Scholar
  33. 33.
    Ooshima, H., Kurakake, M., Kato, J., and Harano, Y. (1991), Appl. Biochem. Biotechnol. 31, 253–266.PubMedCrossRefGoogle Scholar
  34. 34.
    Ooshima, H., Burns, D. S., and Converse, A. O. (1990), Biotechnol. Bioeng. 36, 446–452.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee, D., Yu, A. H. C., Wong, K. K. Y., and Saddler, J. N. (1994), Appl. Biochem. Biotechnol. 45–46, 407–415.CrossRefGoogle Scholar
  36. 36.
    Converse, A. O., Ooshima, H., and Burns, D. S. (1990), Appl. Biochem. Biotechnol. 24–25, 67–73.CrossRefGoogle Scholar
  37. 37.
    Cleresci, L. S., Sinitsyn, A. P., Saunders, A. M., and Bungay, H. R. (1985), Appl. Biochem. Biotechnol. 11, 433–443.CrossRefGoogle Scholar
  38. 38.
    Yu, A. H. C, Lee, D., and Saddler, J. N. (1995), Biotechnol. Appl. Biochem. 21, 203–216.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Ursula Mais
    • 1
  • Ali R. Esteghlalian
    • 1
  • John N. Saddler
    • 1
  • Shawn D. Mansfield
    • 1
  1. 1.Forest Products Biotechnology, Department of Wood ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations