Production of 1,3-Propanediol by Klebsiella pneumoniae

  • He Huang
  • Cheng S. Gong
  • George T. Tsao
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


1,3-Propanediol (1,3-PD) has numerous applications from polymers to cosmetics, foods, lubricants, and medicines. Recently, there are strong industrial interests in a new kind of polyester, polytrimethylene terephthalate, with 1,3-PD as a monomer. This new polyester shows significant promise for use in carpeting and textiles. In this article we introduce a mild aerobic fermentation process using a strain screened from Klebsiella pneumoniae ATCC 25955, which is insensitive to oxygen, to produce 1,3-PD. We also describe a two-step fermentation process starting with glucose that was converted into glycerol with a glycerol-producing yeast, followed by K. pneumoniae that converts glycerol into 1,3-PD without intermediate isolation and purification of glycerol.

Index Entries

1,3-Propanediol glycerol Klebsiella pneumoniae yeast fermentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Potera, C. (1997), Genet. Eng. News 17(11), 19.Google Scholar
  2. 2.
    Beshouri, S. M., Brown, H. S., and Chuah, H. H., et al. (1999), Ploym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 40(1), 569.Google Scholar
  3. 3.
    Sullivan, C. J. (1993), in Ullmann’s Encyclopedia of Industrial Chemistry, vol. A22, Elvers, B., ed., VCH Publishers, NY, pp. 163–171.Google Scholar
  4. 4.
    Stinson, S. C. (1995), Chem. Eng. News 17, 10–14.CrossRefGoogle Scholar
  5. 5.
    Cameron, D. C, Altaras, N. E., Hoffman, M. L., and Shaw, A. J. (1998), Biotechnol. Prog. 14, 116–125.PubMedCrossRefGoogle Scholar
  6. 6.
    Lin, E. C. C. (1976), Annu. Rev. Microbiol. 30, 535–578.PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson, E. A. and Lin, E. C. C. (1987), J. Bacteriol. 169, 2050–2054.PubMedGoogle Scholar
  8. 8.
    Schneider, Z. and Pawelkkiewicz, J. (1996), Acta Biochimica Polonica. Pol. 13, 311–328.Google Scholar
  9. 9.
    Forage, R. G. and Foster, M. A. (1982), J. Bacteriol. 149(2), 413–419.PubMedGoogle Scholar
  10. 10.
    Streekstra, H., Teixeira de Mattos, M. J., Neijssel, O. M., and Tempest, D. S. (1987), Arch. Microbiol. 147, 268–275.CrossRefGoogle Scholar
  11. 11.
    Tong, I. and Cameron, D. C. (1992), Appl. Biochem. Biotechnol. 34/35, 149–159.CrossRefGoogle Scholar
  12. 12.
    Gong, C. S., Du, J. X., Cao, N. J., and Tsao, G. T. (2000), Appl. Biochem. Biotechnol. 84–86, 543–559.PubMedCrossRefGoogle Scholar
  13. 13.
    Toraya, T., Honda, S., Kuno, S., and Fukui, S. (1978), J. Bacteriol. 135(2), 726–729.PubMedGoogle Scholar
  14. 14.
    Honda, S., Toraya, T., and Fukui, S. (1980), J. Bacteriol. 143, 1458–1465.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • He Huang
    • 1
  • Cheng S. Gong
    • 1
  • George T. Tsao
    • 1
  1. 1.School of Chemical Engineering and Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations