Skip to main content

Performance Testing of Zymomonas mobilis Metabolically Engineered for Cofermentation of Glucose, Xylose, and Arabinose

  • Chapter
Biotechnology for Fuels and Chemicals

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

Abstract

IOGEN Corporation of Ottawa, Canada, has recently built a 40t/d biom-ass-to-ethanol demonstration plant adjacent to its enzyme production facility. It has partnered with the University of Toronto to test the C6/C5 cofermenta-tion performance characteristics of the National Renewable Energy Labora-tory’s metabolically engineered Zymomonas mobilis using various biomass hydrolysates. IOGEN’s feedstocks are primarily agricultural wastes such as corn stover and wheat straw. Integrated recombinant Z. mobilis strain AX101 grows on D-xylose and/or L-arabinose as the sole carbon/energy sources and ferments these pentose sugars to ethanol in high yield. Strain AX101 lacks the tetracycline resistance gene that was a common feature of other recombinant Zm constructs. Genomic integration provides reliable cofermentation performance in the absence of antibiotics, another characteristic making strain AX101 attractive for industrial cellulosic ethanol production. In this work, IOGEN’s biomass hydrolysate was simulated by a pure sugar medium containing 6% (w/v) glucose, 3% xylose, and 0.35% arabinose. At a level of 3 g/L (dry solids), corn steep liquor with inorganic nitrogen (0.8 g/L of ammonium chloride or 1.2 g/L of diammonium phosphate) was a cost-effective nutritional supplement. In the absence of acetic acid, the maximum volumetric ethanol productivity of a continuous fermentation at pH 5.0 was 3.54 g/L·h. During prolonged continuous fermentation, the efficiency of sugar-to-ethanol conversion (based on total sugar load) was maintained at >85%. At a level of 0.25% (w/v) acetic acid, the productivity decreased to 1.17 g/L·h at pH 5.5. Unlike integrated, xylose-utilizing rec Zm strain C25, strain AX101 produces less lactic acid as byproduct, owing to the fact that the Escherichia coli arabinose genes are inserted into a region of the host chromosome tentatively assigned to the gene for D-lactic acid dehydrogenase. In pH-controlled batch fermentations with sugar mixtures, the order of sugar exhaustion from the medium was glucose followed by xylose and arabinose. Both the total sugar load and the sugar ratio were shown to be important determinants for efficient cofermentation. Ethanol at a level of 3% (w/v) was implicated as both inhibitory to pentose fermentation and as a potentiator of acetic acid inhibition of pentose fermentation at pH 5.5. The effect of ethanol may have been underestimated in other assessments of acetic acid sensitivity. This work underscores the importance of employing similar assay conditions in making comparative assessments of biocatalyst fermentation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charley, R. C., Fein, J. E., Lavers, B. H., Lawford, H. G., and Lawford, G.R. (1983), Biotechnol. Letts. 5, 164–174.

    Article  Google Scholar 

  2. Stevnsborg, N. and Lawford, H. G. (1986), Appl. Microbiol. Biotechnol. 25, 106–115

    CAS  Google Scholar 

  3. Lawford, H.G. (1988), Appl. Biochem. Biotechnol. 17, 203–209

    Article  CAS  Google Scholar 

  4. Lawford, H.G. (1988), VIII International Symposium on Alcohol Fuels, New Energy and Industrial Technology Development Organization, Sanbi Insatsu Co., Tokyo, Japan, pp. 21–27.

    Google Scholar 

  5. Beavan, M., Zawadzki, B., Droniuk, R., Fein, J., and Lawford, H. G. (1989), Appl. Biochem. Biotechnol. 20/21, 319–326

    Article  Google Scholar 

  6. Lacis, L. S., and Lawford, H. G. (1989), in Bioenergy-Proceedings of the 7th Canadian Bioenergy R&D Seminar, Hogen, E., ed, NRC Canada, Ottawa, Canada, pp. 411–416.

    Google Scholar 

  7. Lawford, H. G. (1987), US patent no. 4,647,534.

    Google Scholar 

  8. Laword, H. G. (1989), US patent no. 4,812,410.

    Google Scholar 

  9. Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 287–304.

    Article  PubMed  Google Scholar 

  10. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 353–368.

    Article  PubMed  Google Scholar 

  11. Lawford, H. G. and Rousseau, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 235–249.

    Article  Google Scholar 

  12. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem Biotechnol. 77–79, 191–204

    Article  Google Scholar 

  13. Lawford, H. G. and Rousseau, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 277–294

    Article  PubMed  Google Scholar 

  14. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J.D. (2000), Appl. Biochem. Biotechnol. 84–86, 295–310.

    Article  PubMed  Google Scholar 

  15. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.

    Article  Google Scholar 

  16. Sprenger, G. A. (1993), J. Bacteriol. 27, 225–237.

    CAS  Google Scholar 

  17. Feldman, S. D., Sahm, H., and Sprenger, G. A. (1992), Appl. Microbiol. 38, 354–361.

    Google Scholar 

  18. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.

    Article  PubMed  CAS  Google Scholar 

  19. Picataggio, S., Zhang, M., Eddy, C. K., Deanda, K., and Finkelstein, M. (1996), US patent no. 5,514,583.

    Google Scholar 

  20. Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K., and Finkelstein, M (1998), US patent no. 5,726,053

    Google Scholar 

  21. Deanda, K. A., Eddy, C., Zhang, M., and Picataggio, S. (1996), Appl. Environ. Micro. 62, 4465–4470.

    CAS  Google Scholar 

  22. Zhang, M., Chou, Y. C., Lai, X. K., Milstrey, S., Danielson, N., Evans, K., Mohagheghi, A., and Finkelstein, M. (1999), Abstract no. 2–16.

    Google Scholar 

  23. Zhang, M., Chou, Y. C., Mohagheghi, A., Evans, K., Milstrey, S., Lai, X. K., and Finkelstein, M. (2000) Abstract no. 2–03.

    Google Scholar 

  24. Zhang, M., Chou, Y-C., Picataggio, S. K., and Finkelstein, M. (1995), US patent no. 5,843,760.

    Google Scholar 

  25. Foody, B. F. and Tolan, J. S. (2000), Abstract no. 6–07.

    Google Scholar 

  26. Foody, B. F. and Tolan, J. S. (2001), Abstract no. 6–05.

    Google Scholar 

  27. Lawford, H. G., Rousseau, J. D., and Tolan, J. S. (2001), Appl. Biochem. Biotechnol. 91–93, 133–146.

    Article  PubMed  Google Scholar 

  28. McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A. eds., ACS, Symposium Series 566, American Chemical Society, Washington, DC. pp. 411–437.

    Chapter  Google Scholar 

  29. Lawford, H. G. and Rousseau, J. D. (2001), Appl. Biochem. Biotechnol. 91–93, 117–131.

    Article  PubMed  Google Scholar 

  30. Lawford, H. G. and Rousseau, J. D. (1995), Appl. Biochem. Biotechnol. 51/52, 179–195.

    Article  PubMed  Google Scholar 

  31. Mohagheghi, A., Evans, K., Finkelstein, M., and Zhang, M. (1998), Appl. Biochem. Biotechnol. 70–72, 285–299.

    Article  PubMed  Google Scholar 

  32. Mohagheghi, A., Evans, K., Chou, Y. C., and Zhang, M. (2002), Appl. Biochem. Biotechnol. 98–100, 885–898.

    Article  PubMed  Google Scholar 

  33. Dennison, E. and Abbas, C. (2000), Abstract no. 2–04.

    Google Scholar 

  34. Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 161–172.

    Article  PubMed  Google Scholar 

  35. Joachimsthal, E. L. and Rogers, P. L. (2000), Appl. Biochem. Biotechnol. 84–86, 343–356.

    Article  PubMed  Google Scholar 

  36. Joachimsthal, E., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lawford, H.G., Rousseau, J.D. (2002). Performance Testing of Zymomonas mobilis Metabolically Engineered for Cofermentation of Glucose, Xylose, and Arabinose. In: Finkelstein, M., McMillan, J.D., Davison, B.H. (eds) Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0119-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0119-9_36

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6621-1

  • Online ISBN: 978-1-4612-0119-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics