Reduction of Furfural to Furfuryl Alcohol by Ethanologenic Strains of Bacteria and Its Effect on Ethanol Production from Xylose

  • Tony Gutiérrez
  • Marian L. Buszko
  • Lonnie O. Ingram
  • James F. Preston
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


The ethanologenic bacteria Escherichia coli strains KO11 and LYO1, and Klebsiella oxytoca strain P2, were investigated for their ability to metabolize furfural. Using high performance liquid chromatography and 13C-nuclear magnetic resonance spectroscopy, furfural was found to be completely biotransformed into furfuryl alcohol by each of the three strains with tryptone and yeast extract as sole carbon sources. This reduction appears to be constitutive with NAD(P)H acting as electron donor. Glucose was shown to be an effective source of reducing power. Succinate inhibited furfural reduction, indicating that flavins are unlikely participants in this process. Furfural at concentrations >10 mM decreased the rate of ethanol formation but did not affect the final yield. Insight into the biochemical nature of this furfural reduction process may help efforts to mitigate furfural toxicity during ethanol production by ethanologenic bacteria.

Index Entries

Furfural detoxification furfuryl alcohol ethanol fermentation Escherichia coli Klebsiella oxytoca 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dean, F. M. (1963), Naturally Occurring Ring Compounds, Butterworths, London.Google Scholar
  2. 2.
    Trudgill, P. W. (1984), in Microbial Degradation of Organic Compounds, Gibson, D. T., ed., Marcel Dekker, NY, pp. 295–307.Google Scholar
  3. 3.
    Dobereiner, W. (1832), Ann. der Chem. 3, 141–146.Google Scholar
  4. 4.
    QO Chemicals (1989), Bulletin 203-D, QO Chemicals, West Lafayette, IN.Google Scholar
  5. 5.
    Dunlop, A. P. (1948), Ind. Eng. Chem. 40, 204–209.CrossRefGoogle Scholar
  6. 6.
    Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., and Ingram, L. O. (2001), Biotechnol. Prog. 17, 287–293.PubMedCrossRefGoogle Scholar
  7. 7.
    Bauer, K., Garbe, D., and Surburg, H. (1990), Common Fragrance and Flavor Materials, VCH, NY, p. 111.Google Scholar
  8. 8.
    Azhar, A. F., Bery, M. K., Colcord, A. R., Roberts, R. S., and Corbitt, G. V. (1981), Biotechnol. Bioeng. Symp. 11, 293–300.Google Scholar
  9. 9.
    Beall, D. S., Ohta, K., and Ingram, L. O. (1991), Biotechnol. Bioeng. 38, 296–303.PubMedCrossRefGoogle Scholar
  10. 10.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–195.CrossRefGoogle Scholar
  11. 11.
    Taherzadeh, M. J., Niklasson, C., and Liden, G. (1999), Bioresour. Technol. 69, 59–66.CrossRefGoogle Scholar
  12. 12.
    Taherzadeh, M. J., Gustafsson, L., Niklasson, C., and Liden, G. (1999), J. Biosci. Bioeng. 87, 169–174.PubMedCrossRefGoogle Scholar
  13. 13.
    Sanchez, B., and Bautista, J. (1988), Enzyme Microb. Technol. 10, 315–318.CrossRefGoogle Scholar
  14. 14.
    Zaldivar, J., Martinez, A., and Ingram, L. O. (1999), Biotechnol. Bioeng. 65, 24–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Palmqvist, E., Almeida, J. S., and Hahn-Hagerdal, B. (1999), Biotechnol. Bioeng. 62, 447–454.PubMedCrossRefGoogle Scholar
  16. 16.
    Boopathy, R., Bokang, H., and Daniels, L. (1993), J. Ind. Microbiol. 11, 147–150.CrossRefGoogle Scholar
  17. 17.
    Boopathy, R., and Daniels, L. (1991), Curr. Microbiol. 23, 327–332.CrossRefGoogle Scholar
  18. 18.
    Brune, G., Schoberth, S. M., and Sahm, H. (1983), Appl. Environ. Microbiol. 46, 1187–1192.PubMedGoogle Scholar
  19. 19.
    Folkerts, M., Ney, U., Kneifel, H., Stackebrandt, E., Witte, E. G., Forstel, H., Schoberth, S. M., and Sahm, H. (1989), Syst. Appl. Microbiol. 11, 161–169.CrossRefGoogle Scholar
  20. 20.
    Schoberth, S. M., Bubb, W. A., Chapman, B. E., and Kuchel, P. W. (1993), J. Microbiol. Methods 17, 85–90.CrossRefGoogle Scholar
  21. 21.
    Wang, P., Brenchley, J. E., and Humphrey, A. E. (1994), Biotechnol. Lett. 16, 977–982.CrossRefGoogle Scholar
  22. 22.
    Hong, S. W., Han, H. E., and Chae, K. S. (1981), J. Liquid Chromatogr. 4, 285–292.CrossRefGoogle Scholar
  23. 23.
    Lee, B. U., Yu, B. S., Lee, K. J., and Hah, Y. C. (1985), Korea J. Microbiol. 23, 241–247.Google Scholar
  24. 24.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugan, K. T., and Ingram, L. O. (1991), Appl. Environ. Microbiol. 57, 2810–2815.PubMedGoogle Scholar
  25. 25.
    Ohta, K., Beall, D. S., Shanmugan, K. T., and Ingram, L. O. (1991), Appl. Environ. Microbiol. 57, 893–900.PubMedGoogle Scholar
  26. 26.
    Yomano, L. P., York, S. W., and Ingram, L. O. (1998), J. Ind. Microbiol. Biotechnol. 20, 132–138.PubMedCrossRefGoogle Scholar
  27. 27.
    Zaldivar, J., and Ingram, L. O. (1999), Biotechnol. Bioeng. 66, 203–210.PubMedCrossRefGoogle Scholar
  28. 28.
    Zaldivar, J., Martinez, A., and Ingram, L. O. (2000), Biotechnol. Bioeng. 68, 524–530.PubMedCrossRefGoogle Scholar
  29. 29.
    Yuan, J.-P., and Chen, F. (1999), Food Chem. 64, 423–427.CrossRefGoogle Scholar
  30. 30.
    Buszko, M. L., Buszko, D., and Wang, D. C. (1998), J. Magn. Reson. 131, 362–366.PubMedCrossRefGoogle Scholar
  31. 31.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Andy. Chem. 28, 350–356.CrossRefGoogle Scholar
  32. 32.
    Neuhaus, D. and Williamson, M. (1989), The Nuclear Overhauser Effect in Structural and Conformational Analysis, VCH, NY.Google Scholar
  33. 33.
    Vitrinskaya, A. M. and Soboleva, G. A. (1975), Appl. Biochem. Microbiol. 11, 579–585.Google Scholar
  34. 34.
    Banerjee, N., Bhatnagar, R., and Viswanathan, L. (1981), Appl. Microbiol. Biotechnol. 11, 226–228.CrossRefGoogle Scholar
  35. 35.
    Neuhauser, W., Haltrich, D., Kulbe, K. D., and Nidetzky, B. (1997), Biochem. J. 326, 683–692.PubMedGoogle Scholar
  36. 36.
    Hata, H., Shimizu, S., and Yamada, H. (1987), Agric. Biol. Chem. 51, 3011–3016.CrossRefGoogle Scholar
  37. 37.
    Kataoka, M., Rohani, L. P. S., Wada, M., Kita, K., Yanase, H., Urabe, I., and Shimizu, S. (1998), Biosci. Biotechnol. Biochem. 62, 167–169.PubMedCrossRefGoogle Scholar
  38. 38.
    Kataoka, M., Rohani, L. P. S., Yamamoto, K., Wada, M., Kawabata, H., Kita, K., Yanase, H., and Shimizu, S. (1997), Appl. Microbiol. Biotechnol. 48, 699–703.PubMedCrossRefGoogle Scholar
  39. 39.
    Shimizu, S., Kataoka, M., Katoh, M., Morikawa, T., Miyoshi, T., and Yamada, H. (1990), Appl. Environ. Microbiol. 56, 2374–2377.PubMedGoogle Scholar
  40. 40.
    Diaz de Villegas, M. E., Villa, P., Guerra, M., Rodriguez, E., Redondo, D., and Martinez, A. (1992), Acta Biotechnol. 12, 351–354.CrossRefGoogle Scholar
  41. 41.
    Weigert, B., Klein, K., Rizzi, M., Lauterbach, C, and Dellweg, H. (1988), Biotechnol. Lett. 10, 895–900.CrossRefGoogle Scholar
  42. 42.
    Han, T., Gonzales, R., Martinez, A., Rodriguez, M., Ingram, L. O., Preston, J. F., and Shanmugam, K. T. (2001), J, Bacteriol. 183, 2979–2988.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Tony Gutiérrez
    • 1
  • Marian L. Buszko
    • 1
  • Lonnie O. Ingram
    • 1
  • James F. Preston
    • 1
  1. 1.Institute of Food and Agricultural Science, Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleUSA

Personalised recommendations