Advertisement

Steady-State Measurements of Lactic Acid Production in a Wild-Type and a Putative D-Lactic Acid Dehydrogenase-Negative Mutant of Zymomonas mobilis

Influence of Glycolytic Flux
  • Hugh G. Lawford
  • Joyce D. Rousseau
Chapter
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

This work represents a continuation of our investigation into environmental conditions that promote lactic acid synthesis by Zymomonas mobilis. The characteristic near theoretical yield of ethanol from glucose by Z. mobilis can be compromised by the synthesis of D - and L-lactic acid. The production of lactic acid is exacerbated by the following conditions: pH 6.0, yeast extract, and reduced growth rate. At a specific growth rate of 0.048/h, the average yield of DL-lactate from glucose in a yeast extract-based medium at pH 6.0 was 0.15 g/g. This represents a reduction in ethanol yield of about 10% relative to the yield at a growth rate of 0.15/h. Very little lactic acid was produced at pH 5.0 or using a defined salts medium (without yeast extract) Under permissive and comparable culture conditions, a tetracycline-resistant, D-ldh negative mutant produced about 50% less lactic acid than its parent strain Zm ATCC 39676. D-lactic acid was detected in the cell-free spent fermentation medium of the mutant, but this could be owing to the presence of a racemase enzyme. Under the steady-state growth conditions provided by the chemostat, the specific rate of glucose consumption was altered at a constant growth rate of 0.075/h. Shifting from glucose-limited to nitrogen-limited growth, or increasing the temperature, caused an increase in the specific rate of glucose catabolism. There was good correlation between an increase in glycolytic flux and a decrease in lactic acid yield from glucose. This study points to a mechanistic link between the glycolytic flux and the control of end-product glucose metabolism. Implications of reduced glycolytic flux in pentose-fermenting recombinant Z. mobilis strains, relative to increased byproduct synthesis, is discussed.

Index Entries

Zymomnas mobilis latic acid end-product selectivity D-lactate dehydrogennase glycolytic flux steady state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.Google Scholar
  2. 2.
    Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993), Crit. Rev. Biotechnol. 13, 57–98.PubMedCrossRefGoogle Scholar
  3. 3.
    Lawford, H. G. (1988), VIII International Symposium on Alcohol Fuels, New Energy and Industrial Technology Development Organization, Sanbi Insatsu, Japan, pp. 21–27.Google Scholar
  4. 4.
    Lawford, H. G. (1988), in Canadian Power Alcohol Conference, Candlish, B., ed., Biomass Energy Institute, Winnipeg, Manitoba, Canada, pp. 245–251.Google Scholar
  5. 5.
    Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996), Appl. Biochem. Biotechnol. 57/58, 741–761.CrossRefGoogle Scholar
  6. 6.
    Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. F. (1992), Appl Biochem. Biotechnol. 34/35, 639–650.Google Scholar
  7. 7.
    Godia, F., Sasas, C., and Sola, C. (1987), Process Biochem. 22, 43–50.Google Scholar
  8. 8.
    Doelle, H. W. (1989), US patent no. 4,797,360.Google Scholar
  9. 9.
    Rogers, P. L. and Tribe, D. E. (1984), US patent no. 4,443,544.Google Scholar
  10. 10.
    Lawford, H. G. (1989), US patent no. 4,840,902.Google Scholar
  11. 11.
    Lawford, H. G. and Rousseau, J. D. (2001), Appl. Biochem. Biotechnol. 91–93, 117–131.PubMedCrossRefGoogle Scholar
  12. 12.
    Lawford, H. G. and Rousseau, J. D. (2002), Appl. Biochem. Biotechnol. 98–100, 429–448.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang, M., Chou, Y-C, Picataggio, S. K., and Finkelstein, M. (1998), US patent no. 5,843,760.Google Scholar
  14. 14.
    De Graaf, A. A., Striegel, K., Wittig, R. M., Laufer, B, Schmitz, G., Wirchert, W., Sprenger, G.A., and Sahm, H. (1999), Arch. Microbiol. 171, 371–385PubMedCrossRefGoogle Scholar
  15. 15.
    Kim, I. S., Barrow, K. D., and Rogers, P. L. (2000), Appl. Biochem. Biotechnol. 84–86, 357–370.PubMedCrossRefGoogle Scholar
  16. 16.
    Swings, J. and DeLey, J. (1977), Bacteriol. Rev. 41, 1–46.PubMedGoogle Scholar
  17. 17.
    Kluyver, A. J. and Hoppenbrouwers, W. J. (1931), Arch. Microbiol. 2, 245–260.Google Scholar
  18. 18.
    Beläich, J. P. and Senez, J. C. (1965), J. Bacteriol. 89, 1195–1200.Google Scholar
  19. 19.
    Dawes, E. A., Ribbons, D. W., and Large, P. J. (1966), Biochem. J. 98, 795–803.PubMedGoogle Scholar
  20. 20.
    Gibbs, M. and DeMoss, R. D. (1954), J. Biol. Chem. 207, 689–694.PubMedGoogle Scholar
  21. 21.
    Johns, M. R., Greenfield, P. F., and Doelle, H. W. (1991), Adv Biochem Eng Biotechnol. 44, 97–121.Google Scholar
  22. 22.
    Lawford, H. G. and Rousseau, J. D. (1998), Appl.Biochem. Biotechnol. 70–72, 173–185.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.PubMedCrossRefGoogle Scholar
  24. 24.
    Joachimsthal, E., Haggett, K. D., and Rogers, P.L. (1999), Appl. Biochem. Biotechnol. 77–79, 147–157.CrossRefGoogle Scholar
  25. 25.
    Lawford, H. G. and Rousseau, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 277–2931.PubMedCrossRefGoogle Scholar
  26. 26.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A. and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 353–368.PubMedCrossRefGoogle Scholar
  27. 27.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 191–204.CrossRefGoogle Scholar
  28. 28.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 295–310.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, M., Chou, Y. C., Lai, X. K., Milstrey, S., Danielson, N., Evans, K., Mohagheghi, A. and Finkelstein, M. (1999), Abstract no. 2–16, 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, CO.Google Scholar
  30. 30.
    Yomano, L. P., Scopes, R. K., and Ingram, L. O. (1993), J. Bacteriol. 175, 3926–3933.CrossRefGoogle Scholar
  31. 31.
    Park, S. C., Kademi, A., and Baratti, J. C. (1993), Biotechnol. Letts. 15, 1179–1184.CrossRefGoogle Scholar
  32. 32.
    Lawford, H. G. and Rousseau, J. D. (1995), Appl. Biochem. Biotechnol. 51/52, 179–195.PubMedCrossRefGoogle Scholar
  33. 33.
    Schmidt, W. and Schügerl, K. (1987), Chem. Eng. J. 36, B39-B48.CrossRefGoogle Scholar
  34. 34.
    Viikari, L. (1988), Crit. Rev. Biotechnol. 7, 237–261.CrossRefGoogle Scholar
  35. 35.
    Garvie, E. I. (1980), Microbiol. Rev. 44, 106–139.PubMedGoogle Scholar
  36. 36.
    Pirt, S. J. (1975), Principles of Microbe and Cell Cultivation, Blackwell Scientific, London, UK, pp. 66–68.Google Scholar
  37. 37.
    Lawford, H. G. (1988), Appl. Biochem. Biotechnol. 17, 203–219.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Hugh G. Lawford
    • 1
  • Joyce D. Rousseau
    • 1
  1. 1.Bio-engineering Laboratory, Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations