Skip to main content

Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

  • Chapter
Biotechnology for Fuels and Chemicals

Abstract

Virtually all members of the order Thermotogales have demonstrated the ability to produce hydrogen; however, some members of this order produce considerably greater quantities than others. With one representative of this order, Thermotoga neapolitana, we have consistently obtained accumulation of 25–30% hydrogen with 12–15% carbon dioxide as the only other prominent product in the batch reaction. In contradistinction to information widely disseminated in the literature, we have also found that most members of this order tolerate and appear to utilize the moderate amounts of oxygen present in the gaseous phase of batch reactors (6–12%), with no apparent decrease in hydrogen production. Hydrogen accumulation has been widely reported to inhibit growth of Thermotogales. While this may be true at very high hydrogen tensions, we have observed log phase bacterial morphology (rods) even in the presence of 25–35% hydrogen concentrations. To maximize hydrogen production and minimize production of hydrogen sulfide, inorganic sulfur donors are avoided and the cysteine concentration in the medium is increased. We and others have demonstrated that different members of the order Thermotogales utilize a wide variety of feedstocks, including complex carbohydrates and proteins. Thus, it appears that organisms within this order have the potential to utilize a variety of organic wastes and to cost-effectively generate hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heydorn, B., Schwendener, H., and Mori, S. (1998), Hydrogen Product Review Chemical Economics Handbook.

    Google Scholar 

  2. Padro, C. E. G. and Putche, V. (1999), NREL/TP-570–27079, Survey of the Economics of Hydrogen Technologies.

    Google Scholar 

  3. US Department of Energy (1998), DOE /GO-10098–532, DOE Hydrogen Program Strategic Plan-Twenty-Year Vision.

    Google Scholar 

  4. US Department of Energy (1995), DOE /GO 10095–088, Hydrogen Program Overview Produced by the National Renewable Energy Laboratory for the DOE.

    Google Scholar 

  5. (1999), in BioHydrogen, Zaborsky, O. R., ed., Plenum, NY.

    Google Scholar 

  6. Kaplan, S. and Moore, M. D. (1998), US patent no. 5,804,424.

    Google Scholar 

  7. Vatsala, T. M. (1990), US patent no. 4,921,800.

    Google Scholar 

  8. Weaver, P. F. (1990), US patent no. 4,919,813.

    Google Scholar 

  9. Melis, A. L., Zhang, M., Foredtier, M., Ghirardi, M. L., and Seibert, M. (2000), Plant Physiol. 122, 127–136 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. Huber, R., Langworthy, T. A., Konig, H., et al. (1986), Arch. Microbiol. 144, 324–333.

    Article  CAS  Google Scholar 

  11. Belkin, B., Wirsen, C. O., and Jannasch, H. W. (1986) Appl. Env. Microbiol. 51(6), 1180–1185.

    CAS  Google Scholar 

  12. Jannasch, H. W., Huber, R., Belkin, S., and Stetter, K. O. (1988), Arch. Microbiol. 150, 103–104.

    Article  Google Scholar 

  13. Huber, R. and Stetter, K. O. (1992). in The Prokaryotes, 2nd ed., Balows, A., Truper, H. G., Dworkin, M., et al., eds., Springer-Verlag, NY, pp. 3809–3815.

    Google Scholar 

  14. Adams, M. W. W. (1994), FEMS Microbiol. Rev. 15, 261–277.

    Article  PubMed  CAS  Google Scholar 

  15. Childers, S. E., Vargas, M., and Noll, K. M. (1992), Appl. Environ. Microbiol. 58, 3949–3953.

    PubMed  CAS  Google Scholar 

  16. Thauer, R. K., Jungerman, K., and Decker, K. (1977) Bacteriol. Rev. 41, 100–180.

    PubMed  CAS  Google Scholar 

  17. Kelly, R. M. and Adams, M. W. W. (1994) Antonie van Leeuwenhoek 66, 247–270.

    Article  PubMed  CAS  Google Scholar 

  18. Shiba, H., Kawasumi, T., Igarashi, Y., Kodama, T., and Minoda, Y. (1985) Arch. Microbiol 141, 198–203.

    Article  CAS  Google Scholar 

  19. Beh, M., Strauss, G., Huber, R., Stetter, K. O., Fuchs, G.(1993) Archives of Microbiology 160(4), 306–311.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Ooteghem, S.A., Beer, S.K., Yue, P.C. (2002). Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana . In: Finkelstein, M., McMillan, J.D., Davison, B.H. (eds) Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0119-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0119-9_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6621-1

  • Online ISBN: 978-1-4612-0119-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics