Skip to main content

Applications of Wavelets to the Analysis of Transient Signals

  • Chapter
Wavelets and Subbands

Abstract

In the first two parts of this book, we have described some of the mathematical tools that can be used to analyze a transient signal. In particular, we have focused to two aspects of signal analysis:

  • • Continuous wavelet transform and wavelet frames. In this case, the emphasis was on describing a signal in terms of time and frequency evolution, at a cost of creating a redundancy in the representation.

  • • Fast wavelet transform and subband transform. In this case, a minimal representation of the signal is obtained to fulfill requirements such as compression, multirate processing, and noise robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abbate, J. Frankel, and P. Das, Wavelet transform signal processing applied to ultrasonics, Proc. of the 1995 QNDE, pp. 741–748, 1995.

    Google Scholar 

  2. A. Abbate, J. Frankel, and P. Das, Wavelet transform signal processing for dispersion analysis of ultrasonic signals, Proc. of the 1995 IEEE International Ultrasonic Symposium, vol. 1, pp. 751–755, 1995.

    Article  Google Scholar 

  3. A. Abbate, J. Frankel, R.W. Reed, and P. Das, Ultrasonic gauging and wavelet image processing for wear and erosion mapping, Proc. of the 1996 QNDE, vol. 18, 1996.

    Google Scholar 

  4. A. Abbate, J. Frankel, R.W. Reed, and P. Das, Wavelet image processing for wear and erosion mapping using an ultrasonic gauging technique, Proc. 1996 Ultrasonic Symposium, 1996.

    Google Scholar 

  5. A. Abbate and P. Das, Wavelet transform signal processing of electroencephalograph signals, US Army Tech. Rep. ARCCB-TR-96007, 1996.

    Google Scholar 

  6. A. Abbate, A. Nayak, J. Koay, R.J. Roy, and P. Das, Biomedical application of wavelets: analysis of electroencephalograph signals for monitoring depth of anesthesia, Proc. 1996 SP1E Conf. on Wavelet Applications, vol. 2762, pp. 412–423, 1996.

    Google Scholar 

  7. A. Abbate, J. Koay, J. Frankel, S.C. Schroeder, and P. Das, Signal detection and noise suppression using a wavelet transform signal processor: Application to ultrasonic flaw detection, IEEE Trans. Ulrason. Ferroelectrics Frequency Control, vol. 44, nO. 1, pp. 14–26, 1997.

    Article  Google Scholar 

  8. A. Abbate, W. Russell, J. Goldmann, P. Kotidids, and C.C. Berndt, Nondestructive determination of thickness and elastic modulus of plasma spray coatings using laser ultrasonics, Rev. Prog. QNDE, vol. 18, pp. 373–380, 1998.

    Google Scholar 

  9. A. Abbate, D. Klimek, P. Kotidis, and B. Anthony, Analysis of dispersive ultrasonic signals by the ridges of the analytic wavelet transform, Rev. Prog. QNDE, vol. 18, pp. 703–710, 1998.

    Google Scholar 

  10. J.D. Aussel and J.P. Monchalin, Rev. Prog. QNDE, Plenum Press, New York, pp. 535–542, 1994.

    Google Scholar 

  11. J.J. Benedetto and D.M. Frasier eds., Wavelets, Mathematics and Applications, CRC Press, Boca Raton, FL, 1994.

    MATH  Google Scholar 

  12. A. Bijaoui, E. Slezak, F. Rué, and E. Lega, Wavelets and the study of the distant universe, Proc. IEEE, vol. 84, n. 4, pp. 670–679, 1996.

    Article  Google Scholar 

  13. V. Biryukov, Y.V. Gulayev, V.V. Krylov, and V.P. Plessky, Surface Acoustic Waves in lnhomogeneous Media, Springer-Verlag, New York, 1995.

    Book  Google Scholar 

  14. D.E. Bray and R.K. Stanley, Nondestructive Evaluation: A Tool in Design, Manufacturing and Sennce, McGraw-Hill Book Company, New York, 1989.

    Google Scholar 

  15. S Cerruti, D. Liberati, and P. Mascellani, Parameter extraction in EEG processing during riskful neurosurgical operations, Signal Processing, Vol. 9, pp. 25–35, 1985.

    Article  Google Scholar 

  16. E. Foufoula-Georgiou and P. Kumar eds., Wavelets in Geophysics, Academic Press, New York, 1994.

    MATH  Google Scholar 

  17. P.M. Gammel, Improved ultrasonic detection using analytic signal magnitude, Ultrasonics, pp. 73–76, 1981.

    Google Scholar 

  18. P.M. Gammel, Analogue implementation of analytic signal processing for pulse-echo systems, Ultrasonics, pp. 279–283, 1981.

    Google Scholar 

  19. M.M. Ghoneim and R.I. Block, Learning and consciousness during general anesthesia, Anesthesiology, vol. 76, pp. 279–305, 1992.

    Article  Google Scholar 

  20. F.A. Gibbs, E.L. Gibbs, and W.G. Lenox, Effect of the electroencephalogram of certain drugs which influence nervous activity, Arch. Intern. Med., vol. 60, pp. 154–166, 1937.

    Article  Google Scholar 

  21. P. Guillemain, R. Kronland-Martinet, and B. Martens, Estimation of spectral lines with the help of the wavelet transform. Applications in NMR spectroscopy, in Wavelets and Applications, edited by Meyer, Springer-Verlag, New York, 1991, pp. 38–60.

    Google Scholar 

  22. P. Guillemain and R. Kronland-Martinet, Characterization of acoustic signals through continuous linear time-frequency representations, Proc. IEEE, vol. 84, n. 4, pp. 561–585, 1996.

    Article  Google Scholar 

  23. S. Kadambe and G.F. Boundreaux-Bartels, Applications of the wavelet transform for pitch detection of speech signals, IEEE Trans. Inform. Theory, vol. 38, pp. 917–924, 1992.

    Article  Google Scholar 

  24. G.S. Kino, Acoustic Waves. Design, Imaging and Analog Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  25. F.F. Klein and D. A. Davis, The use of time domain analyzed EEg in conjnction with cardiovascular parameters for monitoring anesthetic levels, IEEE Trans. Biomed. Eng., vol. 38, pp. 36–40, 1981.

    Article  Google Scholar 

  26. E. Koch, P. Bischoff, U. Pilchmeier, and J. S. Esch, Surgical stimulation induces changes in brain electrical activity during isoflurane/nitrous oxide anesthesia, Anesthesiology, vol. 80, pp. 1026–1034, 1994.

    Article  Google Scholar 

  27. R. Koenig, H. Dunn, and L.Y. Lacy, The sound spectrograph, J. Acoust. Soc. Amer. vol. 18, pp. 19–49, 1946.

    Article  Google Scholar 

  28. P. Kotidis, J. Woodroffe, J. Shah, and T. Schultz, Nondestructive Characterization of Materials, edited by R.E. Green, Plenum Press, New York, 1994, vol. IV, pp. 21–28.

    Chapter  Google Scholar 

  29. P. Kotidis and D. Klimek, Proceedings of the Eighth International Symposium on Nondestructive Characterization of Materials, Boulder, CO, June 1997.

    Google Scholar 

  30. R. Kronland-Martinet, J. Morlet, and A. Grossmann, Analysis of sound patterns through wavelet transforms, Int. J. Pattern Recogn. Art., vol. 1, no. 2, pp. 273–302, 1987.

    Article  Google Scholar 

  31. R. Kronland-Martinet, The wavelet transform for analysis, synthesis and processing of speech and music sounds, Computer Music J., vol. 12, pp. 11–20, 1988.

    Article  Google Scholar 

  32. R. Kronland-Martinet and A. Grossmans, Application of time-frequency and time-scale methods (wavelet transform) to the analysis, synthesis and transformations of natural sounds, Representation of Musical Signals, MIT Press, Cambridge MA, 1991, pp. 45–85.

    Google Scholar 

  33. F. Lakestani, J.F. Coste, and R. Denis, NDT&E Int., vol. 8, no. 5, pp. 171–178, 1995.

    Article  Google Scholar 

  34. M. Lowe, IEEE Trans. Ultrason. Eerroelectrics Frequency Control, vol. 42, pp. 525–542, 1995.

    Article  Google Scholar 

  35. S. Mallat, Wavelets for a Vision, Proc. IEEE, vol. 84, no. 4, pp. 604–614, 1996.

    Article  Google Scholar 

  36. J. McEwen, G.B. Ardenson, M. Low, and L. Jenkins, Monitoring the level of anesthesia by automatic analysis of spontaneous EEG activity, IEEE Trans. Biomed. Eng., vol. 22, pp. 299–305, 1975.

    Article  Google Scholar 

  37. A. Nayak, R. J. Roy, and A. Sharma, Time-frequency spectral representation of the EEG as an aid in the detection of depth of anesthesia, J. Acoust. Soc. Am. vol. 22, pp. 501–513, 1994.

    Google Scholar 

  38. S. Nettel, Wave Physics. Oscillations-Solitons-Chaos, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  39. D.E. Newland, An Introduction to random Vibrations, Spectral and Wavelet Analysis, Wiley, New York, 1993.

    Google Scholar 

  40. J.L. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  41. C.B. Scruby and L.E. Drain, Laser Ultrasonics. Techniques and Applications, Adam Hingler, IOP Publishing Ltd., Bristol, UK, 1990.

    Google Scholar 

  42. A. Sharma and R.J. Roy, Analysis of hidden nodes in a neural network trained for pattern classification of EEG data, Proc. of the 15th Annual International Conf. of the IEEE EMBS, 1993, vol. 1, pp. 252–253.

    Google Scholar 

  43. R. Szu, B. Teller, and A. Lohynan, Causal analytical wavelet transform, Opt Eng. vol. 31, pp. 1825–1829, 1992.

    Article  Google Scholar 

  44. A. Teolis, Computational Signal Processing with Wavelets, Birkhäuser, Boston, MA, 1998.

    MATH  Google Scholar 

  45. C.E. Thomsen, K.N. Christensen, and A. Rosenfalck, Computerized monitoring of depth of anesthesia with isoflurane, Br. J. of Anesthesia, vol. 63, p. 36–43, 1989.

    Article  Google Scholar 

  46. M. Unser and A. Aldroubi, A review of wavelets in biomedical applications, Proc. IEEE, vol. 84, n. 4, pp. 626–638, 1996.

    Article  Google Scholar 

  47. I.A. Viktorov, Rayleigh and Lamb Waves. Physical Theory and Applications. Plenum Press, New York, 1967.

    Google Scholar 

  48. R. Vishnoi and R.J. Roy, Adaptive control of closed circuit anesthesia, IEEE Trans. Biomed. Eng., vol. 39, pp. 39–47, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abbate, A., DeCusatis, C.M., Das, P.K. (2002). Applications of Wavelets to the Analysis of Transient Signals. In: Wavelets and Subbands. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0113-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0113-7_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6618-1

  • Online ISBN: 978-1-4612-0113-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics