Multiwavelets for Geometrically Complicated Domains and Their Application to Boundary Element Methods

  • Johannes Tausch

Abstract

Integral formulations of linear constant-coefficient elliptic boundary value problems involve boundary integral operators of the form
$$ Ku(x): = pf\int_S {\frac{{{\partial^{{{q_x}}}}}}{{\partial n_x^{{{q_x}}}}}} \frac{{{\partial^{{{q_y}}}}}}{{\partial n_y^{{{q_y}}}}}G\left( {x - y} \right)u(y)dSy $$
(39.1)
.

Keywords

Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numer. 1997, 55–228.Google Scholar
  2. 2.
    C. Lage and C. Schwab, Wavelet Galerkin algorithms for boundary integral equations, SI AM J. Sci. Statist Comput 20 (1999), 2195–2222.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    T. von Petersdorff, C. Schwab, and R. Schneider, Multiwavelets for second-kind integral equations, SIAM J. Numer. Anal. 34 (1997), 2212–2227.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    J. Tausch and J. White, Surface independent multiscale bases for the sparse representation of integral operators on complex geometry, preprint,Thttp://www.smu.edu/~tausch/publications.html Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Johannes Tausch

There are no affiliations available

Personalised recommendations