Multiwavelets for Geometrically Complicated Domains and Their Application to Boundary Element Methods

  • Johannes Tausch


Integral formulations of linear constant-coefficient elliptic boundary value problems involve boundary integral operators of the form
$$ Ku(x): = pf\int_S {\frac{{{\partial^{{{q_x}}}}}}{{\partial n_x^{{{q_x}}}}}} \frac{{{\partial^{{{q_y}}}}}}{{\partial n_y^{{{q_y}}}}}G\left( {x - y} \right)u(y)dSy $$


Stiffness Matrix Boundary Element Method Matrix Coefficient Coarse Level Piecewise Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numer. 1997, 55–228.Google Scholar
  2. 2.
    C. Lage and C. Schwab, Wavelet Galerkin algorithms for boundary integral equations, SI AM J. Sci. Statist Comput 20 (1999), 2195–2222.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    T. von Petersdorff, C. Schwab, and R. Schneider, Multiwavelets for second-kind integral equations, SIAM J. Numer. Anal. 34 (1997), 2212–2227.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J. Tausch and J. White, Surface independent multiscale bases for the sparse representation of integral operators on complex geometry, preprint,T Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Johannes Tausch

There are no affiliations available

Personalised recommendations