Skip to main content

Comparison of Zonal, Spectral Solutions for Compressible Boundary Layer and Navier—Stokes Equations

  • Chapter
Integral Methods in Science and Engineering
  • 403 Accesses

Abstract

In this chapter, the author’s zonal, spectral solutions for the partial differential equations (PDE) of the three-dimensional stationary, compressible boundary layer (CBL) given as in [1]–[3] for the computation of the flow over flattened, flying configurations (FC) are now extended to the Navier-Stokes layer (NSL). If \( \eta = \left( {{x_3} - Z\left( {{x_1},{x_2}} \right)} \right)/\delta \left( {{x_1},{x_2}} \right) \) is a new coordinate, the spectral forms of the axial, lateral, and vertical velocity components \( {u_{\delta }},{v_{\delta }}, and w\delta \), of the density function \( R = \ln \rho \) and of the absolute temperature T (31.1)—(31.5) and their nine boundary conditions (31.6)-(31.14), at the NSL-edge \( \left( {\eta = 1} \right) \), are

$$ {u_{\delta }} = {u_e}\sum\limits_{{i = 1}}^N {{u_i}{\eta^i}}, $$
(31.1)

,

$$ {v_{\delta }} = {v_e}\sum\limits_{{i = 1}}^N {{v_i}{\eta^i}} $$
(31.2)

,

$$ {w_{\delta }} = {w_e}\sum\limits_{{i = 1}}^N {{w_i}{\eta^i}} $$
(31.3)

,

$$ R = {R_w} + \left( {{R_e} - {R_w}} \right)\sum\limits_{{i = 1}}^N {{r_i}{\eta^i}} $$
(31.4)

,

$$ T = {T_w} + \left( {{T_e} + {T_w}} \right)\sum\limits_{{i = 1}}^N {{t_i}{\eta^i}} $$
(31.5)

,

$$ {u_{{N - 2}}} = {\alpha_{{0,N - 2}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N - 2}}}{u_i}} $$
(31.6)

,

$$ {v_{{N - 2}}} = {\alpha_{{0,N - 2}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N - 2}}}{v_i}} $$
(31.7)

,

$$ {u_{{N - 1}}} = {\alpha_{{0,N - 1}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N - 1}}}{u_i}} $$
(31.8)

,

$$ {v_{{N - 1}}} = {\alpha_{{0,N - 1}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N - 1}}}{v_i}} $$
(31.9)

,

$$ {u_N} = {\alpha_{{0,N}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N}}}{u_i}} $$
(31.10)

,

$$ {v_N} = {\alpha_{{0,N}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N}}}{v_i}} $$
(31.11)

,

$$ {w_N} = {\gamma_{{0,N}}} + \sum\limits_{{i = 1}}^n {{\gamma_{{i,N}}}{w_i}} $$
(31.12)

,

$$ \sum\limits_{{i = 1}}^N {{r_i} = 1} $$
(31.13)

,

$$ \sum\limits_{{i = 1}}^N {{t_i} = 1} $$
(31.14)

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Nastase, The determination of hybrid analytic-numerical solutions for the three-dimensional compressible boundary layer equations, Z. Angew. Math. Mech. 73 (1993), 520–525.

    Google Scholar 

  2. A. Nastase, A new spectral method and its aerodynamic applications, Proceedings of the Seventh International CFD Symposium, Beijing, China, 1997.

    Google Scholar 

  3. A. Nastase, Spectral methods for the compressible boundary layer and for the Navier-Stokes equations, Proceedings of the ECCOMAS 1998, Athens, Greece, 1998.

    Google Scholar 

  4. H. Schlichting, Grenzschichttheorie, McGraw-Hill, New York, 1979.

    Google Scholar 

  5. A.D. Young, Boundary layers, Blackwell, London, 1989.

    Google Scholar 

  6. A. Nastase, Utilizarea calculatoarelor in optimizarea formelor aerodi-namice (Use of computers in the optimization of aerodynamic shapes), Ed. Acad. RSR, Bucharest, 1973.

    Google Scholar 

  7. A. Nastase, The multidisciplinary and the multipoint optimal design of the flying configurations, via iterative optimum-optimorum theory, in supersonic flow, AIAA Proceedings of the Sixth Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, USA, 1996.

    Google Scholar 

  8. A. Nastase, The viscous optimal shape design, via spectral solutions, Internat. J. Numer. Methods Fluids, C. Taylor, Ph.M. Gresho, N.P. Weatherill, eds., 30 (1999), 137–148.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nastase, A. (2002). Comparison of Zonal, Spectral Solutions for Compressible Boundary Layer and Navier—Stokes Equations. In: Constanda, C., Schiavone, P., Mioduchowski, A. (eds) Integral Methods in Science and Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0111-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0111-3_31

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6617-4

  • Online ISBN: 978-1-4612-0111-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics