Linear Solvers for the Galerkin Boundary Element Method

  • Ore Ademoyero
  • Alan Davies
  • Michael Bartholomew-Biggs

Abstract

In this chapter we consider the solution of linear equations occurring when the Galerkin boundary element method (GBEM) is applied to the two-dimensional mixed potential problem
$${\nabla^2}u = 0 in D$$
(2.1)
subject to the boundary conditions
$$\begin{array}{*{20}{c}} {u = {{u}_{0}}} & {on {{C}_{0}}} & {and} & {q \equiv \frac{{\partial u}}{{\partial n}} = {{q}_{1}}} & {on {{C}_{1}}} \\ \end{array} ,$$
(2.2)
where D is the region bounded by the closed curve, C C 0 + C 1.

Keywords

Alan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.A. Brebbia and J. Dominquez, Boundary elements, an introductory course, Computational Mechanics Publications, Southampton-Boston, 1992.MATHGoogle Scholar
  2. 2.
    L.J. Gray, Evaluation of singular and hypersingular Galerkin integrals: direct limits and symbolic computation, in Singular integrals in boundary element methods, V. Sladek and J. Sladek (Eds.), Computational Mechanics Publications, Southampton-Boston (1998), 33–84.Google Scholar
  3. 3.
    V. Sladek and J. Sladek, Introductory notes on singular integrals, in Singular integrals in boundary element methods, V. Sladek and J. Sladek (Eds.), Computational Mechanics Publications, Southampton-Boston (1998), 1–31.Google Scholar
  4. 4.
    M.R. Hestenes and E. Steifel, Methods of conjugate gradients for solving linear systems,J. Res. Nat. Bureau Standards49 (1952), 409–436.MATHCrossRefGoogle Scholar
  5. 5.
    L. Nazareth, A conjugate gradient algorithm without line searches, J. Optim. Theory Appl. 23 (1977), 373–387.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    O.O. Ademoyero, M.C. Bartholomew-Biggs, and A.J. Davies, Computational linear algebra issues in the Galerkin boundary element method, Technical Report 332, Numerical Optimisation Centre, University of Hertfordshire, 2000.Google Scholar
  7. 7.
    J. Mushtaq and A.J. Davies, Parallel boundary element implementation of the aerofoil problem on a Local Area Network multicomputer system using PVM and HPF, in Proceedings of the Fourth Australasian Conference on Parallel and Real-Time Systems, N. Sharda and A. Tarn (Eds.), Springer (1998), 126–133.Google Scholar
  8. 8.
    A.J. Davies and J. Mushtaq, The domain decomposition boundary element method on a network of transputers, in Boundary Element Technology XI, R.C. Ertekin, C.A. Brebbia, M. Tanaka, and R. Shaw (Eds.), Computational Mechanics Publications, Southampton-Boston (1996), 397–406.Google Scholar
  9. 9.
    J. Mushtaq and A.J. Davies, Parallel implementation of the boundary element method using PVM and HPF on a collection of networked workstations, High Performance Computing 97 (1997), 181–188.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Ore Ademoyero
  • Alan Davies
  • Michael Bartholomew-Biggs

There are no affiliations available

Personalised recommendations