Advertisement

The Role of Cell Adhesion Receptors in Vascular Development: An Overview

  • Paul Robson
  • Susan Pichla
  • Bin Zhou
  • H. Scott Baldwin
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)

Abstract

The establishment of the cardiovascular system represents an early, critical event essential for normal embryonic development. (Risau, 1997; Baldwin, 1998;Tallquist et al., 1999). Two different processes are thought to be involved in embryonic and extraembryonic blood vessel formation: angiogenesis, the budding and branching of vessels from preexisting vessels, and vasculogenesis, the de novo differentiation of endothelial cells from mesoderm and organization of endothelial progenitors into a primitive vascular plexus Fig5.1. This plexus then expands through sprouting angiogenesis, intussusceptive growth, and intercalation of new endothelial cells. Finally, this vascular plexus is remodeled by pruning, fusion, and regression of preexisting vessels into an arborized vascular tree composed of arteries, capillaries, and veins (reviewed in Carmeliet and Collen, 1999). Formation of the yolk sac circulation, differentiation of the endocardium of the heart, and development of larger vascular networks occur by vasculogenesis, while other organs, such as the brain and kidney, appear to be vascularized primarily by angiogenesis.

Keywords

Vascular Development Dorsal Aorta Integrin Alpha Null Mutant Mouse Blood Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allport, J.R., Ding, H., et al. (1997). Endothelial-dependent mechanisms regulate leukocyte transmigration: a process involving the proteasome and disruption of the vascular endothelial-cadherin complex at endothelial cell-to-cell junctions. J Exp Med 186(4):517–527.CrossRefPubMedGoogle Scholar
  2. Allport, J.R., Muller, W.A., et al. (2000). Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J Cell Biol 148(1):203–216.CrossRefPubMedGoogle Scholar
  3. Asahara, T., Murohara, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967.CrossRefPubMedGoogle Scholar
  4. Bach, T.L., Barsigian, C., et al. (1998). VE-cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 238(2):324–334.CrossRefPubMedGoogle Scholar
  5. Baldwin, H.S. (1996). Early embryonic vascular development. Cardiovasc Res 31(spec no): E34–45.CrossRefGoogle Scholar
  6. Baldwin, H.S. (1998). Molecular determinants of embryonic vascular development. In: Polin, R.A., Fox, W.W., eds. Fetal and neonatal physiology, vol. 1, pp. 801–813. Philadelphia: W.B. Saunders.Google Scholar
  7. Baldwin, H.S., Shen, H.M., et al. (1994). Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): alternatively spliced, functionally distinct isoforms expressed during mammalian cardiovascular development. Development 120(9):2539–2553.PubMedGoogle Scholar
  8. Bazzoni, G., Dejana, E., et al. (1999). Endothelial adhesion molecules in the development of the vascular tree: the garden of forking paths. Curr Opin Cell Biol 11(5):573–581.CrossRefPubMedGoogle Scholar
  9. Brancolini, C., Lazarevic, D., et al. (1997). Dismantling cell-cell contacts during apoptosis is coupled to a caspase-dependent proteolytic cleavage of beta-catenin. J Cell Biol 139(3): 759–771.CrossRefPubMedGoogle Scholar
  10. Breier, G., Breviario, F., et al. (1996). Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87(2):630–641.PubMedGoogle Scholar
  11. Brooks, P.C., Clark, R.A., et al. (1994a). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571.CrossRefPubMedGoogle Scholar
  12. Brooks, P.C., Montgomery, A.M., et al. (1994b). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7):1157–1164.CrossRefPubMedGoogle Scholar
  13. Brooks, P.C., Stromblad, S., et al. (1996). Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85(5):683–693.CrossRefPubMedGoogle Scholar
  14. Buck, C.A., Baldwin, H.S., et al. (1993). Cell adhesion receptors and early mammalian heart development: an overview. C R Acad Sci III 316(9):838–859.PubMedGoogle Scholar
  15. Buckley, C.D., Doyonnas, R., et al. (1996). Identification of alpha IT beta 3 as a heterotypic ligand for CD31/PECAM-1. J Cell Sci 109(pt 2):437–445.PubMedGoogle Scholar
  16. Carmeliet, P., Collen, D. (1999). Role of vascular endothelial growth factor and vascular endothelial growth factor receptors in vascular development. Curr Top Microbiol Immunol 237:133–158.CrossRefPubMedGoogle Scholar
  17. Carmeliet, P., Lampugnani, M.G., et al. (1999). Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98(2):147–157.CrossRefPubMedGoogle Scholar
  18. Corada, M., Mariotti, M., et al. (1999). Vascular endothelial-cadherin is an important deter-minant of microvascular integrity in vivo. Proc Nail Acad Sci USA 96(17):9815–9820.CrossRefGoogle Scholar
  19. Del Maschio, A., Zanetti, A., et al. (1996). Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol 135(2):497–510.CrossRefPubMedGoogle Scholar
  20. DeLisser, H., Baldwin, H.S., et al. (1977). PECAM-1. Trends Cardiovasc Med 151:671–677. DeLisser, H.M., Christofidou-Solomidou, M., et al. (1997). Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 151(3):671–677.Google Scholar
  21. Diaz-Gonzalez, F., Forsyth, J., et al. (1996). Trans-dominant inhibition of integrin function. Mol Biol Cell 7(12):1939–1951.PubMedGoogle Scholar
  22. Drake, C.J., Cheresh, D.A., et al. (1995). An antagonist of integrin alpha IT beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 108(pt 7): 2655–2661.PubMedGoogle Scholar
  23. Drake, C.J., Davis, L.A., et al. (1992). Antibodies to beta 1-integrins cause alterations of aortic vasculogenesis, in vivo. Dev Dyn 193(1):83–91.CrossRefPubMedGoogle Scholar
  24. Drake, C.J., Fleming, P.A. (2000). Vasculogenesis in the day 6.5–9.5 mouse embryo. Blood 95(5):1671–1679.PubMedGoogle Scholar
  25. Duncan, G.S., Andrew, D.P., et al. (1999). Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162(5):3022–3030.PubMedGoogle Scholar
  26. Eliceiri, B.P., Cheresh, D.A. (1999). The role of alpha-v integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103(9): 1227–1230.CrossRefPubMedGoogle Scholar
  27. Eliceiri, B.P., Cheresh, D.A. (2000). Role of alpha v integrins during angiogenesis [in process citation]. Cancer J Sci Am 6(suppl 3):S245–249.Google Scholar
  28. Famiglietti, J., Sun, J., et al. (1997). Tyrosine residue in exon 14 of the cytoplasmic domain of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) regulates ligand binding specificity. J Cell Biol 138(6):1425–1435.CrossRefPubMedGoogle Scholar
  29. Friedlander, M., Brooks, P.C., et al. (1995). Definition of two angiogenic pathways by distinct alpha v integrins. Science 270(5241):1500–1502.CrossRefPubMedGoogle Scholar
  30. Gardner, H., Kreidberg, J., et al. (1996). Deletion of integrin al by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev Biol 175:301–313.CrossRefPubMedGoogle Scholar
  31. George, E.L., Baldwin, H.S., et al. (1997). Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood 90(8):3073–3081.PubMedGoogle Scholar
  32. George, E.L., Georges-Labouesse, E.N., et al. (1993). Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119(4):1079–1091.PubMedGoogle Scholar
  33. Georges-Labouesse, E., Messaddeq, N., et al. (1996). Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet 13(3):370–373.CrossRefPubMedGoogle Scholar
  34. Gory-Faure, S., Prandini, M.H., et al. (1999). Role of vascular endothelial-cadherin in vas-cular morphogenesis. Development 126(10):2093–2102.PubMedGoogle Scholar
  35. Gurtner, G.C., Davis, V., et al. (1995). Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 9(1): 1–14.CrossRefPubMedGoogle Scholar
  36. Hartwell, D.W., Butterfield, C.E., et al. (1998). Angiogenesis in P- and E-selectin-deficient mice. Microcirculation 5(2–3):173–178.CrossRefPubMedGoogle Scholar
  37. Herren, B., Levkau, B., et al. (1998). Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol Biol Cell 9(6):1589–1601.PubMedGoogle Scholar
  38. Hidai, C., Zupancic, T., et al. (1998). Cloning and characterization of developmental endothelial locus-1: an embryonic endothelial cell protein that binds the alpha-v-beta-3 integrin receptor. Genes Dev 12(1):21–33.CrossRefPubMedGoogle Scholar
  39. Hirashima, M., Kataoka, H., et al. (1999). Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood 93(4):1253–1263.PubMedGoogle Scholar
  40. Hirsch, E., Gullberg, D., et al. (1994). A-v integrin subunit is predominantly located in nervous tissue and skeletal muscle during mouse development. Dev Dyn 210:108120.Google Scholar
  41. Hodivala-Dilke, K.M., McHugh, K.P., et al. (1999). Beta-3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 103(2):229–238.CrossRefPubMedGoogle Scholar
  42. Huynh-Do, U., Stein, E., et al. (1999). Surface densities of ephrin-B1 determine EphB1coupled activation of cell attachment through alpha-v-beta-3 and alpha-5-beta-1 integrins. EMBO J 18(8):2165–2173.CrossRefPubMedGoogle Scholar
  43. Hynes, R.O. (1992). Integrins: versatility, modulation and signaling in cell adhesion. Cell 69:11–25.CrossRefPubMedGoogle Scholar
  44. Hynes, R.O., Bader, B.L., et al. (1999). Integrins in vascular development. Braz J Med Biol Res 32(5):501–510.CrossRefPubMedGoogle Scholar
  45. Ilan, N., Cheung, L., et al. (2000). Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation. J Biol Chem 275(28):21435–21443.CrossRefPubMedGoogle Scholar
  46. Isner, J.M., Asahara, T. (1999). Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103(9):1231–1236.CrossRefPubMedGoogle Scholar
  47. Kreidberg, J.A., Donovan, M.J., et al. (1996). Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122(11):3537–3547.PubMedGoogle Scholar
  48. Kwee, L., Baldwin, H.S., et al. (1995). Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121(2):489–503.PubMedGoogle Scholar
  49. Lampugnani, M.G., Resnati, M., et al. (1992). A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118:1511–1522.CrossRefPubMedGoogle Scholar
  50. Lampugnani, M.G., Corada, M., et al. (1995). The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alphacatenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 129(1):203–217.CrossRefPubMedGoogle Scholar
  51. Noble, F., Frederid, P., et al. (2000). The transition from vasculogenesis to embryonic arteriogenesis is flow dependent. FASEB 14:A35.Google Scholar
  52. Lu, T.T., Barreuther, M., et al. (1997). Platelet endothelial cell adhesion molecule-1 is phosphorylatable by c-Src, binds Src-Src homology 2 domain, and exhibits immunoreceptor tyrosine-based activation motif-like properties. J Biol Chem 272(22):14442–14446.CrossRefPubMedGoogle Scholar
  53. Mahooti, S., Graesser, D., et al. (2000). PECAM-1 (CD31) expression modulates bleeding time in vivo. Am J Pathol 157(1):75–81.CrossRefPubMedGoogle Scholar
  54. Matsumura, T., Wolff, K., et al. (1997). Endothelial cell tube formation depends on cadherin5 and CD31 interactions with filamentous actin. J Immunol 158(7):3408–3416.PubMedGoogle Scholar
  55. Mikawa, T. (1999). Cardiac lineages. In: Harvey, R.P., Rosenthal, N., eds. Heart develop-ment, pp. 19–33. San Diego: Academic Press.CrossRefGoogle Scholar
  56. Navarro, P., Ruco, L., et al. (1998). Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol 140(6):1475–1484.CrossRefPubMedGoogle Scholar
  57. Newman, P.J. (1999). Switched at birth: a new family for PECAM-1. J Clin Invest 103(1): 5–9.CrossRefPubMedGoogle Scholar
  58. Nishikawa, S.I., Nishikawa, S., et al. (1998). Progressive lineage analysis by cell sorting and culture identifies FLK1 + VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125(9):1747–1757.PubMedGoogle Scholar
  59. Penta, K., Varner, J.A., et al. (1999). Dell induces integrin signaling and angiogenesis by ligation of alpha-V-beta-3. J Biol Chem 274(16):11101–11109.CrossRefPubMedGoogle Scholar
  60. Piali, L., Hammel, P., et al. (1995). CD31/PECAM-1 is a ligand for alpha IT beta 3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol 130(2):451–460.CrossRefPubMedGoogle Scholar
  61. Pinter, E., Barreuther, M., et al. (1997). Platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) tyrosine phosphorylation state changes during vasculogenesis in the murine conceptus. Am J Pathol 150(5):1523–1530.PubMedGoogle Scholar
  62. Pinter, E., Mahooti, S., et al. (1999). Hyperglycemia-induced vasculopathy in the murine vitelline vasculature: correlation with PECAM-1/CD31 tyrosine phosphorylation state. Am J Pathol 154(5):1367–1379.CrossRefPubMedGoogle Scholar
  63. Radice, G.L., Rayburn, H., et al. (1997). Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181(1):64–78.CrossRefPubMedGoogle Scholar
  64. Risau, W. (1997). Mechanisms of angiogenesis. Nature 386:671–674.CrossRefPubMedGoogle Scholar
  65. Sheibani, N., Frazier, W.A. (1999). Thrombospondin-1, PECAM-1, and regulation of angiogenesis. Histol Histopathol 14(1):285–294.PubMedGoogle Scholar
  66. Shi, Q., Rafii, S., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2):362–367.PubMedGoogle Scholar
  67. Soldi, R., Mitola, S., et al. (1999). Role of alpha-v-beta-3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18(4):882–892.CrossRefPubMedGoogle Scholar
  68. Takahashi, T., Kalka, C., et al. (1999). Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438.CrossRefPubMedGoogle Scholar
  69. Tallquist, M.D., Soriano, P., et al. (1999). Growth factor signaling pathways in vascular development. Oncogene 18(55):7917–7932.CrossRefPubMedGoogle Scholar
  70. Testaz, S., Delannet, M., et al. (1999). Adhesion and migration of avian neural crest cells on fibronectin require the cooperating activities of multiple integrins of the (beta)1 and (beta)3 families. J Cell Sci 112(pt 24):4715–4728.PubMedGoogle Scholar
  71. Tomanek, R.J., Schatteman, G.C. (2000). Angiogenesis: new insights and therapeutic potential. Anat Rec 261:126–135.CrossRefPubMedGoogle Scholar
  72. Vecchi, A., Garlanda, C., et al. (1994). Monoclonal antibodies specific for endothelial cells of mouse blood vessels: their application in the identification of adult and embryonic endothelium. Eur J Cell Biol 63:247–254.PubMedGoogle Scholar
  73. Vittet, D., Buchou, T., et al. (1997). Targeted null-mutation in the vascular endothelialcadherin gene impairs the organization of vascular-like structures in embryoid bodies. Proc Nail Acad Sci U S A 94(12):6273–6278.CrossRefGoogle Scholar
  74. Vittet, D., Prandini, M.H., et al. (1996). Embryonic stem cells differentiate in vitro toendothelial cells through successive maturation steps. Blood 88(9):3424–3431.PubMedGoogle Scholar
  75. Waldo, K.L., Kumiski, D., et al. (1996). Cardiac neural crest is essential for the persistencerather than the formation of an arch artery. Dev Dyn 205(3):281–292.CrossRefPubMedGoogle Scholar
  76. Yan, H.C., Baldwin, H.S., et al. (1995). Alternative splicing of a specific cytoplasmic exon alters the binding characteristics of murine platelet/endothelial cell adhesion molecule-1 (PECAM-1). J Biol Chem 270(40):23672–23680.CrossRefPubMedGoogle Scholar
  77. Yang, J.T., Rayburn, H., et al. (1993). Embryonic mesodermal defects in alpha 5 integrindeficient mice. Development 119(4):1093–1105.PubMedGoogle Scholar
  78. Yang, J.T., Rayburn, H., et al. (1995). Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121(2):549–560.PubMedGoogle Scholar
  79. Yang, S., Graham, J., et al. (1999). Functional roles for PECAM-1 (CD31) and VE-cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels. Am J Pathol 155(3):887–895.CrossRefPubMedGoogle Scholar
  80. Yap, A.S., Brieher, W.M., et al. (1997). Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 13:119–146.CrossRefPubMedGoogle Scholar
  81. Zhou, Z., Christofidou-Solomidou, M., et al. (1999). Antibody against PEcAM-1 inhibits tumor angiogenesis in mice. Angiogenesis 3:181–188.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Paul Robson
  • Susan Pichla
  • Bin Zhou
  • H. Scott Baldwin

There are no affiliations available

Personalised recommendations