Conformal Field Theories, Graphs and Quantum Algebras

  • Valentina Petkova
  • Jean-Bernard Zuber
Part of the Progress in Mathematical Physics book series (PMP, volume 23)


This article reviews some recent progress in our understanding of the structure of rational conformal field theories, based on ideas that originate for a large part in the work of A. Ocneanu. The consistency conditions that generalize modular invariance for a given RCFT in the presence of various types of boundary conditions—open, twisted—are encoded in a system of integer multiplicities that form matrix representations of fusion-like algebras. These multiplicities are also the combinatorial data that enable one to construct an abstract “quantum” algebra, whose 6j-and 3j-symbols contain essential information on the operator product algebra of the RCFT and are part of a cell system, subject to pentagonal identities. It looks quite plausible that the classification of a wide class of RCFT amounts to a classification of “Weak C*- Hopf algebras”.


Partition Function Defect Line Conformal Field Theory Vertex Operator Algebra Modular Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.E. Behrend, P.A. Pearce, V.B. Petkova and J.-B. Zuber, On the classification of bulk and boundary conformal field theories, Phys. Lett. B 444: 163–166, 1998, hep-th/9809097.MathSciNetCrossRefGoogle Scholar
  2. [2]
    R.E. Behrend, P.A. Pearce, V.B. Petkova and J.-B. Zuber, Boundary conditions in rational conformal theories, Nucl. Phys., B 579: 707–773, 2000, hep-th/9908036.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J. Böckenhauer and D.E. Evans,Modular invariants, graphs and oz-induction for nets of subfactors, II: Comm. Math. Phys. 200: 57–103, 1999, hep-th/ 98 0502 3; III: Comm. Math. Phys. 205: 183–228, 1999, hep-th/9812110; Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors, math. OA/9911239.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J. Böckenhauer, D. E. Evans and Y. Kawahigashi, On a-induction, chiral generators and modular invariants for subfactors Comm. Math. Phys. 208: 429–487, 1999, math.OA/9904109; Chiral structure of modular invariants for subfactors, Comm. Math. Phys. 210: 733–784, 2000, math. OA/ 9 9 0 714 9.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    G. Böhm and K. Szlachányi, A coassociative C*-quantum group with non-integral dimensions, Lett. Math. Phys. 200: 437–456 1996, q-a l g/ 9 5 0 9 0 0 8; Weak C*-Hopf algebras: The coassociative symmetry of non-integral dimensions, in: Quantum Groups and Quantum Spaces, Banach Center Publ. v. 40, (1997) 9–19; G. Böhm, Weak C* -Hopf Algebras and their application to spin models, Ph.D. Thesis, Budapest 1997.Google Scholar
  6. [6]
    J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270: 186–204, 1986.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    J.L. Cardy, Fusion rules and the Verlinde Formula, Nucl. Phys. B 324: 581–596, 1989.MathSciNetCrossRefGoogle Scholar
  8. [8]
    J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259: 274–278, 1991; D.C. Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries, Nucl. Phys. B 372: 654–682, 1992.CrossRefGoogle Scholar
  9. [9]
    C.H.O. Chui, Ch. Mercat, W. Orrick and P.A. Pearce, Integrable lattice realizations of conformal twisted boundary conditions, hep-th/0106182.Google Scholar
  10. [10]
    C.H.O. Chui, Ch. Mercat, W. Orrick and P.A. Pearce, private communication and to appear.Google Scholar
  11. [11]
    R. Coquereaux, Notes on the quantum tetrahedron, math-ph/0011006; R. Coquereaux and G. Schieber, Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries, hep-th/0107001.Google Scholar
  12. [12]
    P. Di Francesco and J.-B. Zuber, SU (N) lattice integrable models associated with graphs, Nucl. Phys. B 338: 602–646, 1990.MathSciNetCrossRefGoogle Scholar
  13. [13]
    P. Di Francesco and J.-B. Zuber, SU(N) lattice integrable models and modular invariance, in Recent Developments in Conformal Field Theories, Trieste Conference, (1989), S. Randjbar-Daemi, E. Sezgin and J.-B. Zuber eds., World Scientific (1990); P. Di Francesco, Integrable lattice models, graphs and modular invariant conformal field theories, Int. J. Math. Phys. A 7: 407–500, 1992.MATHGoogle Scholar
  14. [14]
    R. Dijkgraaf, C. Vafa, E. Verlinde and H. Verlinde, The Operator algebra of orbifold models, Comm. Math. Phys. 123: 485–526, 1989.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert, Conformal boundary conditions and three-dimensional topological field theory, Phys.Rev.Lett. 84: 1659–1662, 2000, hep-th/9909140.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J. Fuchs, L.R. Huiszoon, A.N. Schellekens, C. Schweigert and J. Walcher, Boundaries, crosscaps and simple currents, Phys. Lett. B 495: 427–434, 2000, hep-th/0007174.MathSciNetMATHGoogle Scholar
  17. [17]
    J. Fuchs and C. Schweigert, A classifying algebra for boundary conditions, Phys. Lett. B 414: 251–259, 1997, hep-th/9708141.MathSciNetGoogle Scholar
  18. [18]
    J. Fuchs and C. Schweigert, Category theory for conformal boundary conditions, math.CT/0106050.Google Scholar
  19. [19]
    T. Gannon, The Classification of affine SU(3) modular Invariants, Comm. Math. Phys. 161: 233–263, 1994; The Classification of SU(3) modular invariants revisited, hep-th/ 9404185; The level two and three modular invariants of SU(n), Lett. Math. Phys. 39: 289–298, 1997.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    T. Gannon, Boundary conformal field theory and fusion ring representations, hep-th/0106105.Google Scholar
  21. [21]
    V.G. Kac and D.H. Peterson, Infinite-Dimensional Lie Algebras, Theta Functions and Modular Forms, Adv. Math. 53: 125–264, 1984.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    A. Kirillov, Jr and V. Ostrik, On q-analog of McKay correspondence and ADE classification of:s72 conformal field theories, math. QA/ 0101219.Google Scholar
  23. [23]
    I. Kostov, Free field presentation of the A,z coset models on the torus, Nucl. Phys. B 300: 559–587, 1988.MathSciNetGoogle Scholar
  24. [24]
    A. Ocneanu, Quantum cohomology, quantum groupoids and subfactors, unpublished lectures given at the First Carribean School of Mathematics and Theoretical Physics, Saint François, Guadeloupe 1993.Google Scholar
  25. [25]
    A. Ocneanu, Paths on Coxeter diagrams: From Platonic solids and singularities to minimal models and subfactors, Lectures on Operator Theory, Fields Institute, Waterloo, Ontario, April 26–30, 1995, (Notes taken by S. Goto), Fields Institute Monographs, AMS 1999, Rajarama Bhat et al, eds.Google Scholar
  26. [26]
    A. Ocneanu, Quantum symmetries for SU(3) CFT Models, Lectures at Bariloche Summer School, Argentina, Jan 2000, to appear in AMS Contemporary Mathematics„ R. Coquereaux, A. Garcia and R. Trinchero, eds.Google Scholar
  27. [27]
    V. Pasquier, Two-dimensional critical systems labelled by Dynkin diagramsNucl. Phys. B 285: 162–172, 1987.MathSciNetCrossRefGoogle Scholar
  28. [28]
    V. Pasquier, Operator content of the ADE lattice modelsJ. Phys. A 20: 57075717, 1987.Google Scholar
  29. [29]
    V.B. Petkova and J.-B Zuber, On structure constants of sl(2) theories, Nucl. Phys. B 438: 347–372, 1995, hep-th/9410209.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    V.B. Petkova and J.-B Zuber, From CFT to graphs, Nucl. Phys. B 463: 161–193, 1996, hep-th/9510175; Conformal field theory and graphs, GROUP21 Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras v. 2, (1997), p. 627, Goslar Conference (1996), eds. H.-D. Doebner et al, World Scientific, Singapore, hep-th/ 9701103.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    V.B. Petkova and J.-B Zuber, Generalized twisted partition functions, Phys. Lett. B 504: 157–164, 2000, hep-th/0011021.MathSciNetGoogle Scholar
  32. [32]
    V.B. Petkova and J.-B Zuber, The many faces of Ocneanu Cells, Nucl. Phys. B 603: 449–496, 2001, hep-th/ 0101151.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    G. Pradisi, A. Sagnotti and Ya.S. Stanev, Completeness conditions for boundary operators in 2D conformal field theory, Nucl. Phys. B 381: 97–104, 1996, hep-th/9603097.MathSciNetMATHGoogle Scholar
  34. [34]
    A. Recknagel, V. Schomerus, Boundary Deformation Theory and Moduli Spaces of D-Branes, Nucl.Phys. B 545: 233–282, 1999, hep-th/9811237.Google Scholar
  35. [35]
    I. Runkel, Boundary structure constants for the A-series Virasoro minimal models, Nucl. Phys. B 549: 563–578, 1999, hep-th/9811178;MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    I. Runkel, Structure constants for the D-series Virasoro minimal models, Nucl. Phys. B 579: 561–589, 2000, hep-th/9908046.Google Scholar
  37. [37]
    R. Talbot, Pasquier models at c = 1: Cylinder partition functions and the role of the affine Coxeter element, J. Phys. A 33: 9101–9118, 2000, hep-th/9911058.Google Scholar
  38. [38]
    E. Verlinde, Fusion rules and modular transformations in 2-D conformal field theory, Nucl. Phys. B 300: 360–376, 1988.MathSciNetMATHGoogle Scholar
  39. [39]
    F. Xu, New braided endomorphisme from conformal inclusions. Comm. Math. Phys. 192: 349–403, 1998.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Valentina Petkova
    • 1
    • 2
  • Jean-Bernard Zuber
    • 3
  1. 1.School of Computing and MathematicsUniversity of NorthumbriaNewcastle upon TyneUK
  2. 2.Institute for Nuclear Research and Nuclear EnergySofiaBulgaria
  3. 3.Service de Physique ThéoriqueCEA SaclayGif-sur-Yvette cedexFrance

Personalised recommendations