Skip to main content

The Nonlinear Steepest Descent Approach to the Asymptotics of the Second Painlevé Transcendent in the Complex Domain

  • Chapter
MathPhys Odyssey 2001

Part of the book series: Progress in Mathematical Physics ((PMP,volume 23))

Abstract

The asymptotics of the generic second Painlevé transcendent \(u(x) as |x| \to \infty , \arg x \in \left( {\tfrac{\pi }{3}k,\tfrac{\pi }{3}(k + 1)} \right), k = 0, 1, \ldots ,5\) is found and justified via the direct asymptotic analysis of the associated Riemann-Hilbert problem based on the Deift-Zhou nonlinear steepest descent method. The asymptotics is proved of the Boutroux type, i.e., it is expressed in terms of the elliptic functions. Kapaev-Novokshenov’s explicit connection formulae between the asymptotic phases in the different sectors are obtained as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Boutroux, Recherches sur les transcendantes de M. Painlevé et l’etude asymptotique des équations différentielles du second ordre. Ann. Sci. Ecol. Norm. Supér., 30:255–376, 1913; 31:99–159, 1914.

    MathSciNet  MATH  Google Scholar 

  2. H. Bateman and A. Erdelyi. Higher Transcendental Functions. McGraw-Hill, New York, 1953.

    Google Scholar 

  3. R. Beals, P. Deift and C. Tomei. Direct and Inverse Scattering on the Line. Math. Surveys and Monographs, No. 28, Amer. Math. Soc., Providence 1988.

    Google Scholar 

  4. P. A. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, New York University, 1999.

    Google Scholar 

  5. P. A. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. of Math., 137:295–368,1995.

    Article  MathSciNet  Google Scholar 

  6. P. A. Deift and X. Zhou. Asymptotics for the Painlevé II equation. Comm. Pure Appl. Math., 48:277–337, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  7. P.A.Deift and X. Zhou. A Riemann-Hilbert approach to asymptotic Problems Arising in the Theory of Random Matrix models, and Also in the Theory of Integrable Statistical Mechanics.Ann.of Math., 146:149–235, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. S. Fokas and M. J. Ablowitz. On the initial value problem of the second Painlevétranscendent. Comm. Math. Phys., 91:381–403, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Flaschka and A. C. Newell. Monodromy-and spectrum-preserving deformations I. Commun. Math. Phys., 76:65–116, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. S. Fokas and X. Zhou. On the Solvability of Painlevé II and IV. Comm. Math. Phys., 144:601–622, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. L. Ince. Ordinary Differential Equations. Dover, New York, 1956.

    Google Scholar 

  12. A. R. Its. Connection formulae for the Painlevé transcendents. in: The Stokes Phenomenon and Hilbert’s I6th Problem, B. L. J. Braaksma, G K. Immink, and M. van der Put, eds. World Scientific Publishing Co. Pte. Ltd, 1996.

    Google Scholar 

  13. A. R. Its and A. A. Kapaev. Quasi-linear Stokes phenomenon for the second Painlevé transcendent.http://www.arXiv.org/abs/nlin.SI/0108010

  14. A. R. Its and V. Yu. Novokshenov. The Isomonodromic Deformation Method in the Theory of Painlevé Equations. Lect. Notes Math., Vol. 1191. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986.

    Google Scholar 

  15. A. R. Its, A. S. Fokas and A. A. Kapaev. On the asymptotic analysis of the Painlevé equations via the isomonodromy method. Nonlinearity, 7:1291–1325, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Joshi and M. D. Kruskal. An asymptotic approach to the connection problem for the first and the second Painlevé equations. Phys. Lett. A 130:129–137, 1988.

    Article  MathSciNet  Google Scholar 

  17. M. Jimbo, T. Miwa and K. Ueno. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. Physica D, 2:306–352, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Jimbo and T. Miwa. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D, 2:407–448, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Jimbo and T. Miwa. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III. Physica D, 4:26–46, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. A. Kapaev. Irregular singular point of the second Painlevé function and the nonlinear Stokes phenomenon. Zapiski Nauch. Seminarov LOMI, 187:139–170, 1991

    MATH  Google Scholar 

  21. A. A. Kapaev. Global asymptotics of the second Painlevé transcendent. Physics Letters A, 167:356–362, 1992.

    Article  MathSciNet  Google Scholar 

  22. A. V. Kitaev. Elliptic asymptotics of the first and the second Painlevé transcendents. Russian Math. Surveys, 49:81–150, 1994.

    Article  MathSciNet  Google Scholar 

  23. A. A. Kapaev and A. V. Kitaev. Connection formulae for the first Painlevé transcendent in the complex domain. Lett. Math. Phys., 27:243–252, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Litvinchuk and T. Spitkovskii. Factorization of measurable matrix functions. Birkhäuser Verlag, Basel, (1987).

    Google Scholar 

  25. B. M. McCoy, C. A. Tracy and T. T. Wu. Painlevé functions of the third kind. J. Math. Phys., 18:1058–1092, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Yu. Novokshenov. Boutroux ansatz for the second Painlevé equation in the complex domain. Izv. Akad. Nauk SSSR ser. Math., 54:1229–1251, 1990.

    MATH  Google Scholar 

  27. X. Zhou. Riemann-Hilbert problem and inverse scattering. SIAM J. Math. Anal.,20:966–988, 1989.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Its, A.R., Kapaev, A.A. (2002). The Nonlinear Steepest Descent Approach to the Asymptotics of the Second Painlevé Transcendent in the Complex Domain. In: Kashiwara, M., Miwa, T. (eds) MathPhys Odyssey 2001. Progress in Mathematical Physics, vol 23. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0087-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0087-1_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6605-1

  • Online ISBN: 978-1-4612-0087-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics