Skip to main content

On Some Linear and Nonlinear Eigenvalue Problems in Relativistic Quantum Chemistry

  • Chapter
  • 298 Accesses

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 49))

Abstract

In relativistic quantum mechanics [1], the bound states of an electron under the action of an external electrostatic potential V are represented by the wave functions φ ∈ L 2 (ℝ3, ℂ4) which are solutions of the equation

$$ (H_0 + V)\varphi = \lambda \varphi ,\lambda \in \mathbb{R} $$
((1.1))
$$ with H_0 = - ich\sum\limits_{k = 1}^3 {\alpha _k \partial _k + mc^2 \beta ,} $$
((1.2))

where c denotes the speed of light, m > 0, the mass of the electron, and h is Planck’s constant. Moreover, α1, α2, α3and β are 4 × 4 complex matrices, whose standard form (in 2 × 2 blocks) is

$$ \beta = \left( {\begin{array}{*{20}c} I & 0 \\ 0 & { - I} \\ \end{array} } \right), \alpha _k = \left( {\begin{array}{*{20}c} 0 & {\sigma _k } \\ {\sigma _k } & 0 \\ \end{array} } \right) (k = 1,2,3), $$

with

$$ \sigma _1 = \left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right), \sigma _2 = \left( {\begin{array}{*{20}c} 0 & { - i} \\ i & 0 \\ \end{array} } \right),\sigma _3 = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & { - 1} \\ \end{array} } \right). $$

.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Bjorken and S.D. Drell, Relativistic quantum mechanics, McGraw-Hill, New York-Toronto-London, 1964.

    Google Scholar 

  2. B. Buffoni and L. Jeanjean, Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 377–404.

    MathSciNet  MATH  Google Scholar 

  3. B. Buffoni, L. Jeanjean, and C.A. Stuart, Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993), 179–186.

    Article  MathSciNet  MATH  Google Scholar 

  4. V.I. Burenkov and W.D. Evans, On the evaluation of the norm of an integral operator associated with the stability of one-electron atoms, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 993–1005.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Castro and A.C. Lazer, Applications of a min-max principle, Rev. Colombiana Mat. 10 (1976), 141–149.

    MathSciNet  MATH  Google Scholar 

  6. C. Conley and E. Zehnder, The Birkhoff—Lewis fixed point theorem and a conjecture of V.I. Arnold, Invent. Math. 73 (1983), 33–49.

    Article  MathSciNet  MATH  Google Scholar 

  7. S.N. Datta and G. Deviah, The minimax technique in relativistic Hartree—Fock calculations, Pramana 30 (1988), 387–405.

    Article  Google Scholar 

  8. J.P. Desclaux, Relativistic Dirac—Fock expectation values for atoms with Z = 1 to Z = 120, Atomic Data and Nuclear Data Tables 12 (1973), 311–406.

    Article  Google Scholar 

  9. J. Dolbeault, M. J. Esteban, and E. Séré, Variational characterization for eigenvalues of Dirac operators, Cale. Var. Partial Differential Equations 10 (2000), 321–347.

    Article  MATH  Google Scholar 

  10. J. Dolbeault, M.J. Esteban, and E. Séré, About the eigenvalues of operators with gaps. Application to Dirac operators, J. Funct. Anal. 174 (2000), 208–226.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Dolbeault, M.J. Esteban, E. Séré, and M. Vanbreugel, to appear in Phys. Rev. Lett. 85(19) (2000), 4020–4023.

    Article  Google Scholar 

  12. M.J. Esteban and E. Séré, Existence and multiplicity of solutions for linear and nonlinear Dirac problems, in Partial differential equations and their applications, Eds. P.C. Greiner, V. Ivrii, L.A. Seco and C. Sulem., 107–118, CRM Proc. Lecture Notes, 12, Amer. Math. Soc., Providence, RI, 1997.

    Google Scholar 

  13. M.J. Esteban and E. Séré, Solutions of the Dirac—Fock equations for atoms and molecules, Comm. Math. Phys. 203 (1999), 499–530.

    Article  MathSciNet  MATH  Google Scholar 

  14. M.J. Esteban and E. Séré, The nonrelativistic limit for the Dirac—Fock equations, to appear in Ann. H. Poincaré.

    Google Scholar 

  15. W.D. Evans, P. Perry, and H. Siedentop, The spectrum of relativistic one-electron atoms according to Bethe and Salpeter, Comm. Math. Phys. 178 (1996), 733–746.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Fang and N. Ghoussoub, Morse-type information on Palais-Smale sequences obtained by min-max principles, Manuscripta Math. 75 (1992), 81–95.

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Gorceix, P. Indelicato, and J.P. Desclaux, Multiconfiguration Dirac—Fock studies of two-electron ions: I. Electron-electron interaction, J. Phys. B: At. Mol. Phys. 20 (1987), 639–649.

    Article  Google Scholar 

  18. I.P. Grant, Relativistic Calculation of Atomic Structures, Adv. Phys. 19 (1970), 747–811.

    Article  Google Scholar 

  19. M. Griesemer, R.T. Lewis, and H. Siedentop, A minimax principle in spectral gaps: Dirac operators with Coulomb potentials, Doc. Math. 4 (1999), 275–283.

    MathSciNet  MATH  Google Scholar 

  20. M. Griesemer and H. Siedentop, A minimax principle for the eigen-values in spectral gaps, preprint mp-arc 97–492, J. London Math. Soc. 60(2) (1999), 490–500.

    Article  MathSciNet  MATH  Google Scholar 

  21. [] I.W. Herbst, Spectral theory of the operator Comm. Math. Phys. 53 (1977), 285–294.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Kato, Perturbation theory for linear operators, Springer, 1966.

    Google Scholar 

  23. Y.K. Kim, Relativistic self-consistent Field theory for closed-shell atoms, Phys. Rev. 154 (1967), 17–39.

    Article  Google Scholar 

  24. M. Klaus and R. Wüst, Characterization and uniqueness of distinguished self-adjoint extensions of Dirac operators, Comm. Math. Phys. 64 (1978–79), 171–176.

    Article  MathSciNet  Google Scholar 

  25. W. Kutzelnigg, Relativistic one-electron Hamiltonians “for electrons only” and the variational treatment of the Dirac equation, Chemical Physics 225 (1997), 203–222.

    Article  Google Scholar 

  26. E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys. 53 (1977), 185–194.

    Article  MathSciNet  Google Scholar 

  27. I. Lindgren and A. Rosen, Relativistic self-consistent field calculations, Case Stud. At. Phys. 4 (1974), 93–149.

    Google Scholar 

  28. P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), 33–97.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Nenciu, Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms, Comm. Math. Phys. 48 (1976), 235–247.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Paturel, Solutions of the Dirac-Fock equations without projector, Ann. Henri Poincaré 1 (2000), 1123–1157.

    Article  MathSciNet  MATH  Google Scholar 

  31. U.W. Schmincke, Distinguished self-adjoint extensions of Dirac operators, Math. Z. 129 (1972), 335–349.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Swirles, The relativistic self-consistent field, Proc. Roy. Soc. A 152 (1935), 625–649.

    Article  Google Scholar 

  33. J.D. Talman, Minimax principle for the Dirac equation, Phys. Rev. Lett. 57 (1986), 1091–1094.

    Article  MathSciNet  Google Scholar 

  34. B. Thaller, The Dirac equation, Springer-Verlag, 1992.

    Google Scholar 

  35. C. Tix, Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall, Bull. London Math. Soc. 30 (1998), 283–290.

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Tix, Lower bound for the ground state energy of the no-pair Hamiltonian, Phys. Lett. B 405 (1997), 293–296.

    Article  MathSciNet  Google Scholar 

  37. R. Wüst, Dirac operators with strongly singular potentials, Math. Z. 152 (1977), 259–271.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Esteban, M.J., Séré, E. (2002). On Some Linear and Nonlinear Eigenvalue Problems in Relativistic Quantum Chemistry. In: Benci, V., Cerami, G., Degiovanni, M., Fortunato, D., Giannoni, F., Micheletti, A.M. (eds) Variational and Topological Methods in the Study of Nonlinear Phenomena. Progress in Nonlinear Differential Equations and Their Applications, vol 49. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0081-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0081-9_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6604-4

  • Online ISBN: 978-1-4612-0081-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics