Skip to main content

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 49))

  • 303 Accesses

Abstract

We consider functionals that are invariant under the action of an arbitrary group of symmetries and have the mountain pass geometry, and introduce a suitable notion of genus which allows computation of lower bounds for the Morse indices of critical orbits at corresponding minimax values. Via a Borsuk-Ulam type property, we relate these critical values to those which are relevant for obtaining multiplicity results for perturbed symmetric problems. This allows us to obtain good estimates for their growth, which are useful in applications, and extends previous results of Bahri and Lions and Tanaka for even functionals to more general group actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 276 (1981), 1–32.

    Article  MathSciNet  Google Scholar 

  3. A. Bahri and P.L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math. 41 (1988), 1027–1037.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Bartsch, Topological methods for variational problems with symmetries, Lecture Notes in Math. 1560, Springer-Verlag, Berlin-Heidelberg, 1993.

    Google Scholar 

  5. V. Benci, A geometrical index for the group S1 and some applications to the study of periodic solutions of ordinary differential equations, Comm. Pure Appl. Math. 34 (1981), 393–432.

    MathSciNet  MATH  Google Scholar 

  6. V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), 533–572.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Bolle, On the Bolza problem, J. Differential Equations 152 (1999), 274–288.

    Article  MathSciNet  MATH  Google Scholar 

  8. A.1\4. Candela and A. Salvatore, Multiplicity results of an elliptic equation with non-homogeneous boundary conditions, Topol. Methods Nonlinear Anal. 11 (1998), 1–18.

    MathSciNet  Google Scholar 

  9. K.-C. Chang, Infinite dimensional Morse theory and multiple solution problems, Progr. Nonlinear Differential Equations Appl., 6, Birkhäuser, Boston, 1993.

    Chapter  Google Scholar 

  10. M. Clapp, Critical point theory for perturbations of symmetric functionals, Comment. Math. Helvetici 71 (1996), 570–593.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Clapp, Borsuk—Ulam theorems for perturbed symmetric function-als, Nonlinear Analysis 47 (2001), 3749–3758.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Clapp, S. Hernández-Linares, and E. Hernández-Martínez, Linking-preserving perturbations of symmetric functionals, preprint.

    Google Scholar 

  13. M. Clapp and W. Marzantowicz, Essential equivariant maps and Borsuk—Ulam theorems, J. London Math. Soc. 61 (2000), 950–960.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Clapp and D. Puppe, Critical point theory with symmetries, J. Reine Angew. Math. 418 (1991), 1–29.

    MathSciNet  MATH  Google Scholar 

  15. T. tom Dieck, Transformation groups, de Gruyter Studies in Mathematics, 8, Walter de Gruyter & Co., Berlin, 1987.

    Google Scholar 

  16. I. Ekeland, N. Ghoussoub, and H. Tehrani, Multiple solutions for a classical problem in the calculus of variations, J. Differential Equations 131 (1996), 229–243.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Hingston, Equivariant Morse theory and closed geodesics, J. Differential Geometry 19 (1984), 85–116.

    MathSciNet  MATH  Google Scholar 

  18. M. A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, Macmillan, New York, 1964.

    Google Scholar 

  19. A. Marino and G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Un. Mat. Ital. (4) 11 (1975), suppl., 1–32.

    MathSciNet  MATH  Google Scholar 

  20. P.H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272 (1982), 753–770.

    Article  MathSciNet  MATH  Google Scholar 

  21. P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Reg. Conf. Ser. Math., 65, Amer. Math. Soc., Providence, RI, 1986.

    Google Scholar 

  22. E.H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  23. M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manuscripta Math. 32 (1980), 335–364.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. Partial Differential Equations 14 (1989), 99–128.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Viterbo, Indice de Morse des points critiques obtenus par minimax, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 221–225.

    MathSciNet  MATH  Google Scholar 

  26. A.G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127–150.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clapp, M. (2002). Morse Indices at Mountain Pass Orbits of Symmetric Functionals. In: Benci, V., Cerami, G., Degiovanni, M., Fortunato, D., Giannoni, F., Micheletti, A.M. (eds) Variational and Topological Methods in the Study of Nonlinear Phenomena. Progress in Nonlinear Differential Equations and Their Applications, vol 49. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0081-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0081-9_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6604-4

  • Online ISBN: 978-1-4612-0081-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics