Skip to main content

Continuum and Numerical Simulation of Porous Materials in Science and Technology

  • Chapter

Abstract

Continuum mechanics of porous materials touches all kinds of problems arising from the necessity to successfully describe the behaviour of geomaterials such as saturated, partially saturated or empty porous solids. Geomaterials as well as further porous media like concrete, sinter materials, polymeric and metallic foams, living tissues, etc., basically fall into the category of multiphasic materials, which can be described within the framework of a macroscopic continuum mechanical approach by use of the well-founded theory of porous media (TPM).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Biot: General theory of three-dimensional consolidationJ. Appl. Phys. 12pp. 155–164, 1941.

    Article  MATH  Google Scholar 

  2. M.A. Blot: Theory of propagation of elastic waves in a fluid-saturated porous solid, I: low frequency rangeJ. Acoust. Soc. Am. 28pp. 168–178, 1956.

    Google Scholar 

  3. A.W. Bishop: The effective stress principleTeknisk Ukeblad 39 pp. 859–863, 1959.

    Google Scholar 

  4. R.M. Bowen: Theory of mixtures, in: A.C. ERINGEN (ed):Continuum Physics; Volume III: Mixtures and EM Field TheoriesAcademic Press, New York, 1976, pp. 1–127.

    Google Scholar 

  5. R.M. Bowen: Incompressible porous media models by use of the theory of mixturesInt . J. Engng . Sci. 18 pp. 1129–1148, 1980.

    Article  MATH  Google Scholar 

  6. R.M. Bowen: Compressible porous media models by use of the theory of mixturesInt. J. Engng. Sci. 20pp. 697–735, 1982

    Article  MATH  Google Scholar 

  7. R.B.J. Brinkgreve:Geomaterial Models and Numerical Analysis of Softening, Ph.D. thesis, CIP-Gegevens Koniglijke Bibliotheek, Den Haag, 1994.

    Google Scholar 

  8. O. Coussy:Mechanics of Porous ContinuaWiley, Chichester, 1995.

    MATH  Google Scholar 

  9. R.H. Crawford, D.C. and Erson, W.N. Waggenspack: Mesh rezoning of 2-d isoparametric elements by inversionInt. J. Num. Meth. Engng 28pp. 523–531, 1989.

    Article  MATH  Google Scholar 

  10. R. De Boer: Highlights in the historical development of porous media theory: toward a consistent macroscopic theoryApplied Mechanics Review 49pp. 201–262, 1996

    Article  Google Scholar 

  11. R. De Boer:Theory of Porous MediaSpringer-Verlag, Berlin, 2000.

    Book  MATH  Google Scholar 

  12. R. De Boer, W. EHLERSTheorie der Mehrkomponentenkontinua mit Anwendung auf Bodenmechanische Probleme Forschungsberichte aus dem Fachbereich Bauwesen40 Universität-GH-Essen, 1986.

    Google Scholar 

  13. R.De Boer, W. Ehlers: Uplift, friction and capillarity - three fundamental effects for liquid-saturated porous media, Int. J. Solids Struct. 26pp. 43–57, 1990.

    Article  Google Scholar 

  14. R. De Boer, W. Ehlers, S. Kowalski, J. Plischka: Porous Media - A Survey of Different Approaches, Forschungsberichte aus dem Fachbereich Bauwesen54Universität-GH-Essen, 1991.

    Google Scholar 

  15. R. De Borst: Simulation of strain localization: A reappraisal of the Cosserat continuumEngng. Comput. 8pp. 317–332, 1991

    Article  Google Scholar 

  16. S. Diebels:Mikropolare Zweiphasenmodelle: Formulierungaufder Basis der Theorie Poröser Medien, Habilitation, Bericht Nr. II-4, Institut für Mechanik (Bauwesen), Universität Stuttgart, 2000

    Google Scholar 

  17. S. Diebels, W. Ehlers: On fundamental concepts of multiphase micropolar materialsTechnische Mechanik 16pp. 77–88, 1996.

    Google Scholar 

  18. S. DiebelsP.Ellsiepen, W. Ehlers: Error-controlled RungeKuttatime integration of a viscoplastic hybrid two-phase modelTechnische Mechanik 19pp. 19–27, 1999.

    Google Scholar 

  19. W. EhlersPoröse Medien - ein Kontinuumsmechanisches Modellauf derBasis der MischungstheorieForschungsberichte aus dem Fachbereich Bauwesen47 Universität-GH-Essen, 1989.

    Google Scholar 

  20. W. Ehlers: Constitutive equations for granular materials in geomechanical context, in: K. Nutter (ed.): Continuum mechanics in environmental sciences and geophysicsCISM Coursesand Lectures 337Springer-Verlag, Wien, 1993, pp. 313–402

    Google Scholar 

  21. W. Ehlers: A single-surface yield function for geomaterialsArch. Appl. Mech 65pp. 246–259, 1995

    Article  MATH  Google Scholar 

  22. W. Ehlers: Grundlegende konzepte in der theorie poröser medienTechnische Mechanik 16pp. 63–76, 1996

    Google Scholar 

  23. W. Ehlers, M. Ammann, S. Diebels: h-Adaptive FE methods applied to single-and multiphase problemsInt. J. Numer. Meth. Engng 54pp. 219–239, 2002

    Article  MATH  Google Scholar 

  24. W. Ehlers, P. Blome: A triphasic model for unsaturated soils based on the theory of porous media, in: G. Capriz, V.N. Ghionna, P. Giovine, N. Moraci (eds.): Mathematical Models in Soil MechanicsMathematical and Computer ModellingElsevier Science Publishers, Amsterdam, 2002, in press.

    Google Scholar 

  25. W. Ehlers, A. Droste: A continuum model for highly porous aluminium foamTechnische Mechanik 19pp. 341–350, 1999

    Google Scholar 

  26. W. Ehlers, P. Ellsiepen: Theoretical and numerical methods in environmental continuum mechanics based on the theory of porous media, in: B. A. Schrefler (ed.): Environmental geomechanicsCISM Courses and Lectures 417Springer-Verlag, Wien, 2001, pp. 1–81

    Google Scholar 

  27. W. Ehlers, P. Ellsiepen, M. Ammann: Time-and space-adaptive methods applied to localization phenomena in empty and saturated micropolar and standard porous materialsInt. J. Numer. Meth. Engng 52pp. 503–526, 2001

    Article  MATH  Google Scholar 

  28. W. Ehlers, P. Ellsiepen, P. Blome, D. Mahnkopf, B. Markert:Theoretische und Numerische Studien zur Lösung von Randund Anfangswertproblemen in der Theorie Poröser MedienAbschlußbericht zum DFG-Forschungsvorhaben Eh 107/6–2, Bericht Nr. 99-II-1, Institut für Mechanik (Bauwesen), Universität Stuttgart, 1999.

    Google Scholar 

  29. W. Ehlers, J. Kubik: On finite dynamic equations for fluid-saturated porous mediaActa Mechanica 105pp. 101–317, 1994

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Ehlers, B. Markert: On the viscoelastic behaviour of fluid-saturated materialsGranular Matter 2pp. 153–161, 2000

    Article  Google Scholar 

  31. W. Ehlers, B. Markert: A linear viscoelastic biphasic model for soft tissues based on the theory of porous mediaASME J. Biomech. Engng 123pp. 418–424, 2001.

    Article  Google Scholar 

  32. W. Ehlers, H. Müllerschön: Stress-strain behaviour of cohesion-less soils: experiments, theory and numerical computations, in: A. Cividini (ed.): Application of numerical methods to geotechnical problemsCISM Courses and Lectures 397Springer-Verlag, Wien, 1998, pp. 675–684

    Google Scholar 

  33. W. Ehlers, W. Volk: On shear band localization phenomena of liquid-saturated granular elasto-plastic porous solid materials accounting for fluid viscosity and micropolar solid rotationsMech. Coh.-Frict. Materials 2pp. 301–320, 1997

    Article  Google Scholar 

  34. W. Ehlers, W. Volk: On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materialsInt. J. Solids Struct 35pp. 4597–4617, 1998

    Article  MATH  Google Scholar 

  35. P. Ellsiepen:Zeit-und OrtsadaptiveVerfahrenAngewandt auf Mehrphasenprobleme Poröser Medien, Dissertation, Bericht Nr. II-3, Institut für Mechanik (Bauwesen), Universität Stuttgart, 1999.

    Google Scholar 

  36. A.C. Eringen: On non-local plasticityInt. J. Engng. Sci 19pp. 1461–1474, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Gallimard, P. Ladevèze, J. P. Pelle: Error estimation and adaptivity in elastoplasticityInt. J. Numer. Methods Engng. 39pp. 129–217, 1996

    Article  Google Scholar 

  38. E. Hairer, C. Lubich, M. Roche:The Numerical Solution of Differential-Algebraic Equations by Runge-Kutta MethodsSpringer-Verlag, Berlin, 1989.

    Google Scholar 

  39. E. Hairer, G. Wanner:Solving Ordinary Differential Equations Vol. 2: Stiff andDifferential-Algebraic ProblemsSpringer-Verlag, Berlin, 1991.

    Google Scholar 

  40. S.M. Hassanizadeh, W.G. Gray: General conservation equations for multi-phase systems: 1. Averaging procedureAdv. Water Resour 2pp. 131–144, 1979

    Article  Google Scholar 

  41. S.M. Hassanizadeh, W.G. Gray: General conservation equations for multi-phase systems: 2. Mass, momentum, energy and entropy equationsAdv. Water Resour. 2pp. 191–203, 1979.

    Article  Google Scholar 

  42. I. Kossaczkl’: A recursive approach to local mesh refinement in two and three dimensionsJ. Comp. Appl. Math 55pp. 275–288, 1994

    Article  Google Scholar 

  43. R. Krause, E. Rank: A fast algorithm for point-location in a finite element meshComputing 57pp. 849–862, 1996

    Article  MathSciNet  Google Scholar 

  44. P. Ladevèse, J. P. Pelle, P. Rougeot: Error estimation and mesh optimization for classic finite elementsEng. Comp.8, pp. 69–80, 1991.

    Article  Google Scholar 

  45. R.W. Lewis, B.A. Schrefler:The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous MediaWiley, Chichester, 1st—edition, 1998.

    Google Scholar 

  46. W.F. Mitchell: Adaptive refinement for arbitrary finite-element spaces with hierarchical basesJ. Comp. Appl. Math.36, pp. 65–78, 1991.

    Article  MATH  Google Scholar 

  47. V.C. Mow, M.C. Gibbs, W.M. Lai, W.B. Zhu, K.A. Athanasiou: Biphasic indentation of articular cartilage - II.1. Biomechanics22, pp. 853–861, 1989.

    Article  Google Scholar 

  48. W. Nowacki:Theory of Asymmetric ElasticityPergamon Press, Oxford, 1986.

    MATH  Google Scholar 

  49. P. Perzyna: Fundamental problems in viscoplasticityAdv. Appl. Mech. Eng.9, pp. 243–377, 1966.

    Article  Google Scholar 

  50. B.A. Schrefler, C.E. Majorna, L. Sanavia: Shear band localization in saturated porous mediaArch. Mech.47, pp. 577–599, 1995.

    MATH  Google Scholar 

  51. J.R. Shewchuk:Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay TriangulatorSchool of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1996; http://www.cs.cmu. edu/“quake/triangel.html.

    Google Scholar 

  52. P. Steinmann: A micropolar theory of finite deformation and finite rotation multiplicative elasto-plasticityInt. J. Solids Struct.31, pp. 1063–1084,1994.

    Article  MathSciNet  MATH  Google Scholar 

  53. K. Terzaghi:Erdbaumechanik auf Bodenphysikalischer GrundlageFranz Deuticke, Leipzig, 1925.

    MATH  Google Scholar 

  54. K. Terzaghi, R. Jelinek:Theoretische BodenmechanikSpringer-Verlag, Berlin, 1954.

    Book  Google Scholar 

  55. C. Truesdell, R.A. Toupin: The classical field theories, in: S. Flügge (ed.):Handbuch der Physik,Springer-Verlag, Berlin III/1, pp. 226–902, 1960.

    Google Scholar 

  56. M.T. VAN Genuchten: A closed-form equation for predicting the hydraulic conductivity of unsaturated soilsSoil Sci. Soc. America J.44, pp. 892–898, 1980.

    Article  Google Scholar 

  57. W. Volk:Untersuchung des Lokalisierungsverhaltens Mikropolarer Poröser Medien mit Hilfe der Cosserat-TheorieDissertation, Bericht Nr. II-2, Institut für Mechanik (Bauwesen), Universität Stuttgart, 1999.

    Google Scholar 

  58. O.C. Zienkiewicz, J.Z. Zhu: A simple error estimator and adaptive procedure for practical engineering analysisInt. J. Numer. Meth. Engrg. 24 pp. 337–357, 1987

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ehlers, W. (2002). Continuum and Numerical Simulation of Porous Materials in Science and Technology. In: Capriz, G., Ghionna, V.N., Giovine, P. (eds) Modeling and Mechanics of Granular and Porous Materials. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0079-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0079-6_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6603-7

  • Online ISBN: 978-1-4612-0079-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics