Skip to main content

Flow of Water in Rigid and Non-Rigid, Saturated and Unsaturated Soils

  • Chapter

Abstract

Flow of water in soils is studied intensely in soil physics and hydrology. The continuum theory of mixtures can be used as a framework for outlining the theory. The well-established theory for flow of water in rigid soils is reviewed briefly, with emphasis on the description and main implications of the non-linear theory proposed by Richards in 1931. For non-rigid soils, it is convenient to formulate the theory in terms of material coordinates of the solid phase. For one-dimensional, vertical flow, it is shown that, compared to the theory for rigid soils, the effect of the weight of the soil may be to reverse the sign of the gravitational force in the Richards equation. Progress with multi-dimensional deformation processes is outlined, including the complications arising from cracking. Finally, available analytical and numerical solutions of one-dimensional, equilibrium and flow problems for water in non-rigid soils are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Biot: General theory of three-dimensional consolidationJ. Appl. Phys. 12pp.155–164, 1941.

    Article  MATH  Google Scholar 

  2. J.R. Blake, P.M. Colombera: Sedimentation: a comparison between theory and experimentChem. Eng. Sci. 32pp. 221–228, 1977.

    Article  Google Scholar 

  3. G.H. Bolt, S. Iwata, A.J. Peck, P.A.C. Raats, A.A. Rode, G.Vachaud, A.D. Voronin: Soil physics terminologyBull. Int. Soc. Soil Sci. 49pp. 26–35, 1976.

    Google Scholar 

  4. R. Bowen: Compressible porous media models by use of the theory of mixturesInt. J. Engng. Sci. 20pp. 697–735, 1982.

    Article  MATH  Google Scholar 

  5. P. Broadbridge: Infiltration in saturated swelling soils and slurries: exact solutions for constant supply rateSoil Sci. 149pp. 13–22, 1990.

    Article  Google Scholar 

  6. J.J.B. Bronswijk: Shrinkage geometry of a heavy clay soil at various stressesSoil Sci. Soc. Am. J. 54pp. 1500–1502, 1990.

    Article  Google Scholar 

  7. J.J.B. Bronswijk, J.J. Evers-Vermeer: Shrinkage of Dutch clay soil aggregatesNeth. J. Agric. Sci. 38pp. 175–194, 1990

    Google Scholar 

  8. J.A. De Vos, D.L.R. Hesterberg, P.A.C. Raats: Water flow and nitrate leaching in a layered silt loamSoil Sci. Soc. Am. J. 64pp.517–527,2000

    Article  Google Scholar 

  9. C. Dirksen: Soil Physics Measurements, Catena Verlag, Reiskirchen, 2000.

    Google Scholar 

  10. W.R. Gardner: Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water tableSoil Sci. 85pp. 228–232, 1958.

    Article  Google Scholar 

  11. P. Garnier, E. Perrier, R. Angulo Jaramillo, P. Baveye: Numerical model of 3-dimensional anisotropic deformation and 1dimensional water flow in swelling soilsSoil Sci. 162pp.410–420,1997.

    Article  Google Scholar 

  12. P. Garnier, M. Rieu, P. Boivin, M. Vauclin, P. Baveye: Determining the hydraulic properties of a swelling soil from a transient evaporation experimentSoil Sci. Soc. Am. J. 61pp.1555–1563,1997.

    Article  Google Scholar 

  13. B.H. Gilding: Qualitative mathematical analysis of the Richards equationTransp. Porous Media5, pp. 561–566, 1991.

    Google Scholar 

  14. J.V. Giráldez:The Theory of Infiltration and Drainage in Swelling SoilsPh.D. thesis, University of California, Riverside (Univ. Microfilms, Ann Arbor, Michigan, 1976, Abstract DC J 77–11772).

    Google Scholar 

  15. J.V. Giráldez, G. Sposito: Moisture profiles during steady vertical flows in soilsWater Resour. Res. 14pp. 314–318, 1978.

    Article  Google Scholar 

  16. J.V. Giráldez, G. Sposito: Infiltration in swelling soilsWater Re-sour. Res. 21pp. 33–44, 1985.

    Article  Google Scholar 

  17. P.H. Groenevelt, G.H. Bolt: Water retention in soilSoil Sci.113, pp. 238–245, 1972.

    Article  Google Scholar 

  18. W.B. Haines: The volume changes associated with variations of water content in soilJ. Agric. Sci. Cambridge13, pp. 296–311, 1923.

    Article  Google Scholar 

  19. M. Heinen, P. DE Willigen:FUSSIM2: A two-dimensional simulation model for water flow, solute transport and root uptake of water and nutrients in partly unsaturated porous media, Quantitative Approaches in Systems Analysis 20DLO Research Institute for Agro-biology and Soil Fertility and the C.T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands, 1998.

    Google Scholar 

  20. D.J. Kim, R. Angulo-Jaramillo, M. Vauclin, J. Feyen, S.I. Choi: Modelling of soil deformation and water flow in swelling soilGeoderma 92pp. 217–238, 1999.

    Article  Google Scholar 

  21. J.M. Kirby, D.E. Smiles: Hydraulic conductivity of aqueous bentonite suspensionsAust. J. Soil Res. 26pp. 561–574, 1988.

    Article  Google Scholar 

  22. G. Kirchhoff:Vorlesungen über die Theorie der Wärme Herausgegeben von M. PlanckTeubner, Leipzig, 1894, p. 13.

    Google Scholar 

  23. A. Klute (ed.):Methods of soil analysis; part 1: physical and mineralogical methods, Agronomy Monograph 9, 2nd edition, American Society of Agronomy, MadisonWisconsin, USA, 1986.

    Google Scholar 

  24. A. Mcnabb: A mathematical treatment of one-dimensional soil consolidationQ. Appl. Math.17, pp. 337–347, 1960.

    MathSciNet  MATH  Google Scholar 

  25. E.E. Miller: Physics of swelling and cracking soilsJ. Colloid Interface Sci.52, pp. 434–443, 1975

    Article  Google Scholar 

  26. E.E. Miller, R.D. Miller: Physical theory of capillary flow phenomenaJ. Appl. Phys.27, pp. 324–332, 1956.

    Article  Google Scholar 

  27. D.B. Mcworther, F. Marinelli: Theory of soil-water flow, in: R.W. Skaggs, J. Van Schilfgaarde (eds.): Agricultural drainageAgronomy Monograph 38American Society of Agronomy, Crop and Soil Science Societies of America, Madison, Wisconsin, USA, 2000.

    Google Scholar 

  28. H.J. Morel-Seytoux: Multiphase flows in porous media, in P. Novak (ed.):Developments in Hydraulic Engineering4, Elsevier, London, 1983, pp. 103–174

    Google Scholar 

  29. J.-Y. Parlange: A note on the moisture diffusivity of saturated swelling systems from desorption experimentsSoil Sci.120pp. 156–158, 1975.

    Article  Google Scholar 

  30. J.-Y. Parlange: Water transport in soilsAnn. Rev. Fluid Mech. 12pp. 77–102, 1980.

    Article  Google Scholar 

  31. J.-Y. Parlange, I. Lisle, R.D. Braddock, R.E. Smith: The three-parameter infiltration equationSoil Sci. 133pp. 337–341, 1982.

    Article  Google Scholar 

  32. J.R. Philip: Hydrostatics and hydrodynamics in swelling soilsWater Resour. Res. 5pp. 1070–1077, 1969.

    Article  Google Scholar 

  33. J.R. Philip: Theory of infiltration, Adv.Hydrosci. 5pp. 215–296, 1969.

    Google Scholar 

  34. J.R. Philip: ReplyWater Resour. Res. 6pp. 1248–1251, 1970.

    Google Scholar 

  35. J.R. Philip: Fifty years progress in soil physicsGeoderma 12pp. 265–280, 1974.

    Article  Google Scholar 

  36. J.R. Philip: Quasianalytic and analytic approaches to unsaturated flow, in: W.L. Steffen, O.T. Denmead (eds.): Flow and transport in the natural environment: advances and applicationsProc. Int. Symp. on Flow and Transport in the Natural Environment 1987 Canberra,AustraliaSpringer-Verlag, Berlin, 1988, pp. 30–47.

    Google Scholar 

  37. J.R. Philip: How to avoid free boundary problems, in: K.H. Hoff-Man, J. Sprekels (eds.): Free boundary problems: theory and applicationsResearch NotesinMathematics 185Longman, London, 1990, pp. 193–207.

    Google Scholar 

  38. J.R. Philip: Flow and volume change in soils and other porous media, in: T.K. KARALIS (ed.):Mechanics of SwellingSpringer, Berlin, 1992, pp. 3–32.

    Chapter  Google Scholar 

  39. J.R. Philip: Phenomenological approach to flow and volume change in soils and other mediaAppl. Mech. Rev. 48pp. 650–658, 1995.

    Article  Google Scholar 

  40. J.R. PhilipD.E.Smiles:Macroscopic analysis of the behaviour of colloidal suspensionsAdv. Colloid Interface Sci. 17pp. 83–103, 1982.

    Article  Google Scholar 

  41. J.R. Philip, C.J. Van Duijn:Redistribution with air diffusionWater Resour. Res 35pp. 2295–2300, 1999.

    Article  Google Scholar 

  42. P.A.C. Raats: Axial fluid flow in swelling and shrinking porous rodsAbstracts 40 th Annual Meeting of the Society of Rheology, 1969, p. 13.

    Google Scholar 

  43. P.A.C. Raats:The distribution of the uptake of water by plants: inference from hydraulic and salinity data, Proc. A GRIMED Seminar on the Movement of Water and Salts as a Function of the Properties of the Soil under Localized Irrigation, 1979, Bologna, Italy, Istituto d’AgronomiaUniversità di Bologna, Italy, 1982, pp. 35–46.

    Google Scholar 

  44. P.A.C.Raats: Applications of the theory of mixtures in soil science, in: C. Truesdell:Rational Thermodynamics2nd-edition, Springer—Verlag, New York, Appendix 5D, 1984, pp. 326–343.

    Google Scholar 

  45. P.A.C. Raats: Mechanics of cracking soils, in: J. Bouma, P.A.C. Raats (eds.)Proc. ISSSSympon Water and Solute Movement in Heavy Clay Soils. ILRI publication 37International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 1984, pp. 23–38.

    Google Scholar 

  46. P.A.C. Raats: Applications of the theory of mixtures in soil scienceMath. Modelling 9pp. 849–856, 1987.

    Article  Google Scholar 

  47. P.A.C. Raats: Quasianalytic and analytic approaches to unsaturated flow: commentary, in: W.L. Steffen, O.T. Denmead (eds.): Flow and transport in the natural environment: advances and applicationsProc. Int. Symp. on Flow and Transport in the Natural Environment 1987 Canberra AustraliaSpringer-Verlag, Berlin, 1988, pp. 48–58.

    Chapter  Google Scholar 

  48. P.A.C. Raats: Characteristic lengths and times associated with processes in the root zone, in: D. Hillel, D.E. Elrick (eds):Scaling in Soil Physics: PrinciplesandApplications, Soil Science Society of America, Madison, Wisconsin, 1990, pp. 59–72.

    Google Scholar 

  49. P.A.C. Raats: On the roles of characteristic lengths and times in soil physical processes, in:Proc. 14 th Int. Congr. Soil Sci. 1990 Kyoto,Japan1990, pp. 202–207.

    Google Scholar 

  50. P.A.C. Raats: A superclass of soils, in: M.TH. Van Genuchten, F.J. Leij, L.J. Lund (eds.): Proc. Int. Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils 1989 Riverside California, University of California, Riverside,1992,pp. 45–51.

    Google Scholar 

  51. P.A.C. Raats: Spatial and material description of some processes in rigid and non-rigid saturated and unsaturated soils, in: J.-F. Thimus, Y. Abousleiman, A.H.-D. Cheng, O. Coussy, E. Detournay (eds.): Poromechanics - A tribute to Maurice A. BiotProceedings of the Biot Conference on Poromechanics 1998 Louvain-la-Neuve BelgiumBalkema, Rotterdam, 1998, pp. 135–140.

    Google Scholar 

  52. P.A.C. Raats: Developments in soil water physics since the mid 1960sGeoderma 100pp.355–387, 2001.

    Article  Google Scholar 

  53. P.A.C. Raats, A. Klute: Transport in soils: the balance of massSoil Sci. Soc.Am. Proc. 32pp. 161–166, 1968.

    Google Scholar 

  54. P.A.C. Raats, A. Klute: Transport in soils: the balance of momentumSoil Sci. Soc. Am. Proc. 32pp. 452–456, 1968.

    Article  Google Scholar 

  55. P.A.C. Raats, W.R. Gardner: Movement of water in the unsaturated zone near a water tableAgronomy Monograph 17American Society of Agronomy, Madison, Wisconsin, 1974, pp. 311–357.

    Google Scholar 

  56. L.A. Richards: Capillary conduction of liquids through porous mediumsPhysics 1pp. 318–333, 1931.

    Article  MATH  Google Scholar 

  57. K. Rijniersce:A Simulation Model for Physical Soil Ripening in the IJsselmeerpoldersLelystad, The Netherlands, 1983.

    Google Scholar 

  58. K. Rijniersce: Crack formation in newly reclaimed sediments in the IJsselmeerpolders, in: J. Bouma, P.A.C. Raats (eds.):Proc. Symp. on WaterandSolute Movement in Heavy Clay Soils,ILRI Publication 37International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 1984, pp. 59–62.

    Google Scholar 

  59. J. Simunek, T. Vogel, M.TH. Van Genuchten: HYDRUS-2D, Simulating water flow and solute transport in two-dimensional variably saturated media, version 1.2Research Report 132U.S. Salinity Laboratory, Riverside, U.S.A, 1996.

    Google Scholar 

  60. D.E. Smiles: Infiltration into a swelling soilSoil Sci 117pp. 140–147, 1974.

    Article  Google Scholar 

  61. D.E. Smiles: On the validity of the theory of flow in saturated swelling materialsAustr. J. Soil Res. 14pp. 389–395, 1976.

    Article  Google Scholar 

  62. D.E. Smiles: Sedimentation and filtration equilibriaSeparation Sci. 11pp. 1–16, 1976.

    Article  Google Scholar 

  63. D.E. Smiles: Further comments on estimating the moisture diffusivity of saturated swelling materials using sorptivity dataSoil Sci. 124pp. 125–126, 1977.

    Article  Google Scholar 

  64. D.E. Smiles: Constant rate filtration of bentoniteChem. Eng. Sci. 33pp. 1355–1361, 1978.

    Article  Google Scholar 

  65. D.E.Smiles:Transient-and steady-flow experiments testing theory of water flow in saturated bentoniteSoil Sci. Soc. Am. J. 42pp. 1114,1978.

    Google Scholar 

  66. D.E. SmilesJ.H.Knight, T.X.T. Nguyen-Hoan: Gravity filtration with accretion of slurry at constant rateSeparation Sci. Techn. 14, pp. 175–192, 1979.

    Google Scholar 

  67. D.E. Smiles, P.A.C. RaatsJ.H.Knight: Constant pressure filtration: the effect of a filter membrane, Chem. Eng. Sci. 37pp. 707–714, 1982.

    Article  Google Scholar 

  68. D.E. Smiles: Principles of constant pressure filtration, in: N.P. Cheremisinoff (ed.):Encyclopedia of Fluid Mechanics; Vol. 5: Slurry Flow Technology, Gulf Publ. Co., Houston, Texas, USA, 1986, pp. 791–824.

    Google Scholar 

  69. D.E. Smiles: Material coordinates and solute movement in consolidating clayChem. Eng. Sci. 55pp. 773–781, 2000.

    Article  Google Scholar 

  70. D.E. Smiles, A.G. Harvey: Measurement of moisture diffusivity of wet swelling materialsSoil Sci. 116pp. 391–399, 1973.

    Article  Google Scholar 

  71. D.E. Smiles, P.A.C. RaatsJ.H.Knight: Constant pressure filtration: the effect of a filter membraneChem. Eng. Sci. 37pp. 707–714, 1982.

    Article  Google Scholar 

  72. K.A. Smith, C.E. Mullins (eds.):Soil and Environmental Analysis: Physical Methods2“-edition, Marcel Dekker, New York, 2000.

    Google Scholar 

  73. G. Sposito: A thermodynamic integral equation for the equilibrium moisture profile in swelling soilWater Resour. Res. 11pp. 499–500, 1975

    Article  Google Scholar 

  74. G. Sposito: On the differential equation for the equilibrium moisture profile in swelling soilSoil Sci. Soc. Am. Proc. 39pp. 1053–1056, 1975.

    Article  Google Scholar 

  75. G. Sposito: Steady vertical flows in swelling soilsWater Resour. Res. 11pp. 461–464, 1975

    Article  Google Scholar 

  76. G. Sposito:The Thermodynamics of Soil SolutionsClarendon Press, Oxford, 1981.

    Google Scholar 

  77. T. Talsma: A note on shrinkage behaviour of a clay paste under various loadsAust. J. Soil Res. 15pp. 275–277, 1977.

    Article  Google Scholar 

  78. L. Stroosnijder:Infiltratie en herverdeling van water in grond (Infiltration and redistribution of water in soils). Verslagen van Landbouwkundige Onderzoekingen (Agricultural Research Reports) 8471976.

    Google Scholar 

  79. C. Truesdell, R.A. Toupin: The classical field theories, in: S. FLÜGGE (ed.):Handbuch der PhysikSpringer-Verlag, BerlinIII/1 pp. 226–902, 1960.

    Google Scholar 

  80. R. Van Dijke:Multi-Phase Flow Modeling of Soil Contamination and Soil RemediationPh.D. thesis, Wageningen Agricultural University, 1997.

    Google Scholar 

  81. M.TH.Van Genuchten,F.J Leij,L.J Lund(eds.):Proc. Int. Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils 1989 Riverside CaliforniaU.S. Salinity Laboratory USDA—ARS and Department of Soil and Environmental Sciences, University of California, Riverside, 1992.

    Google Scholar 

  82. M.TH. Van Genuchten, F.J. Leij, L.J. Lund (eds.):Proc. Int. Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media 1997 Riverside California,U.S. Salinity Laboratory USDA—ARS and Department of Soil and Environmental Sciences, University of California, Riverside, 1999.

    Google Scholar 

  83. S. Whitaker: Flow in porous media II: the governing equations for immiscible, two-phase flowTransp. Porous Media 1pp. 105–125, 1986.

    Article  Google Scholar 

  84. E.G. Youngs, G.D. Towner: Comments on “Hydrostatics and hydrodynamics in swelling soils”Water Resour. Res. 6pp. 1246–1247, 1970.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raats, P.A.C. (2002). Flow of Water in Rigid and Non-Rigid, Saturated and Unsaturated Soils. In: Capriz, G., Ghionna, V.N., Giovine, P. (eds) Modeling and Mechanics of Granular and Porous Materials. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0079-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0079-6_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6603-7

  • Online ISBN: 978-1-4612-0079-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics